THE ELLIPTIC TYPE NODE CONFIGURATION AND INTERPOLATION IN \mathbb{R}^{2*1}

Ping Zhu (Ji'an Teachers College, Ji'an 343009, Jiangxi, China)

Abstract

In this paper, we have obtained an expression of the bivariate Vandermonde determinant for the Elliptic Type Node Configuration in \mathbb{R}^2 , and discussed the possibility of the corresponding multivariate Lagrange, Hermite and Birkhoff interpolation.

Key words: Multivariate interpolation, Polynomial interpolation, Birkhoff interpolation, Node configuration.

1. Introduction

In this paper, we use the usual multivariate notation $w^j = w_1^{j_1} \cdots w_s^{j_s}$, $|j| = j_1 + \cdots + j_s (j_1, \cdots, j_s \in \mathbb{Z}_+)$ and let P_n be the (bivariate) polynomial space of all real (bivariate) polynomials of degree at most n.

Now we introduce the concept of the Curve Type Node Configuration (CTNC):

Definition 1. Curve Type Node Configuration A (CTNCA)^[3]. Let $L_n = (n + 1)(2n + 1)$. Then carry out the following steps:

- 0. Arbitrarily select a point as node x_1 in \mathbb{R}^2 ;
- 1. Draw a quadratic irreducible curve X_1 such that it does not go through the node x_1 on R^2 (X_1 can be an ellipse, a hyperbola or a parabola), arbitrarily select five distinct points from X_1 as nodes x_2, \dots, x_6 ;

. . .

n. Draw a quadratic irreducible curve X_n such that it does not go through the nodes that have been selected on R^2 (X_n can be an ellipse, a hyperbola or a parabola), arbitrarily select 4n+1 distinct points from X_n as nodes $x_{L_{n-1}+1}, \dots, x_{L_n}$.

The obtained node group $\hat{X}_n = \{x_i : i = 1, \dots, L_n\}$ is called the Curve Type Node Configuration A (CTNCA). If every quadratic irreducible curve is an ellipse, then \hat{X}_n can be called an Elliptic Type Node Configuration A (ETNCA).

Let w = (u, v) be the variables in R^2 and arrange the bivariate monomial sequence $\varphi_1, \varphi_2, \varphi_3, \cdots$ as the following order:

$$1; \ u,v,u^2,uv,v^2; \ u^3,u^2v,uv^2,v^3,u^4,u^3v,u^2v^2,uv^3,\ v^4; \cdot \cdot \cdot \cdot$$

^{*} Received July 19, 1995.

 $^{^{1)} \}rm Visiting$ scholar at the Mathematics Department, University of Melbourne, Parkville, Vic. 3052 Australia

258 P. ZHU

The multivariate Vandermonde determinant that we will study can be formulated as follows:

$$VD_n\begin{pmatrix} \varphi_1, & \cdots, & \varphi_{L_n} \\ x_1, & \cdots, & x_{L_n} \end{pmatrix} = \det[\phi_1, \cdots, \phi_{L_n}]$$

where the column vector

$$\phi_i = [\varphi_1(x_i), \cdots, \varphi_{L_n}(x_i)]^T.$$

If a node distribution guarantees the existence and uniqueness of a Lagrange interpolant to any given data, we say that the set of nodes admits unique Lagrange interpolation. Hence, \hat{X}_n admits unique Lagrange interpolation if and only if

$$VD_n\begin{pmatrix} \varphi_1, & \cdots, & \varphi_{L_n} \\ x_1, & \cdots, & x_{L_n} \end{pmatrix} \neq 0.$$

To allow coalescence of nodes along the curves X_1, \dots, X_n , we consider the following definition.

Definition 2. Curve Type Node Configuration B (CTNCB). There exist quadratic irreducible curves X_1, \dots, X_n , such that

$$x_{L_{j-1}+1}, \cdots, x_{L_i} \in X_j \setminus (X_{j+1} \cup \cdots \cup X_n)$$

for $j = 1, \dots, n$ as in CTNCA, where

$$x_{L_{j-1}+1}, \cdots, x_{L_j} = \underbrace{y_{j1}, \cdots, y_{j1}}_{\ell_{j1}}, \cdots, \underbrace{y_{jk_j}, \cdots, y_{jk_j}}_{\ell_{jk_j}}$$

with
$$\ell_{j1} + \cdots + \ell_{jk_j} = L_j - L_{j-1}, j = 1, \cdots, n$$
.

Node coalescence along X_j corresponds to Hermite interpolation with derivatives $D_{X_j}^k$ ($D_{X_j}^0 := I$, the identity operator). The definition of D_{X_j} will be different according to whether X_j is an ellipse, a hyperbola or a parabola. In this paper, we will give the definition of D_{X_j} when X_j is an ellipse. We denote the column vectors by

$$D_{X_j}^k \phi_i = [D_{X_j}^k \varphi_1(x_i), \cdots, D_{X_j}^k \varphi_{L_n}(x_i)]^T.$$

Hence, the generalized Vandermonde determinant corresponding to the Hermite interpolation problem on the nodes \hat{X}_n satisfying CTNCB becomes:

$$HD_{n}\begin{pmatrix} \varphi_{1}, & \cdots, & \varphi_{L_{n}} \\ x_{1}, & \cdots, & x_{L_{n}} \end{pmatrix}$$

$$= \det \left[\phi_{1} \vdots \cdots \vdots \underbrace{\phi_{j_{1}} \vdots D_{X_{j}} \phi_{j_{1}} \vdots \cdots \vdots D_{X_{j}}^{\ell_{j_{1}}-1} \phi_{j_{1}} \vdots \cdots \vdots \phi_{jk_{j}} \vdots D_{X_{j}} \phi_{jk_{j}} \vdots \cdots \vdots D_{X_{j}}^{\ell_{jk_{j}}-1} \phi_{jk_{j}}} \vdots \cdots \right].$$

$$(for points on X_{j})$$

To allow coalescence of the quadratic irreducible curves X_1, \dots, X_n , we consider the following definition.

Definition 3. Curve Type Node Configuration C (CTNCC). The set X_n consists of distinct nodes x_1, \dots, x_{L_n} , and there exist curves X_1, \dots, X_n where

$$X_1, \dots, X_n = \underbrace{Y_1, \dots, Y_1}_{m_1}, \dots, \underbrace{Y_d, \dots, Y_d}_{m_d},$$