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A POSTERIORI ERROR ESTIMATION FOR
NON-CONFORMING QUADRILATERAL FINITE ELEMENTS
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Abstract. We derive an a posteriori error estimator giving a computable upper
bound on the error in the energy norm for finite element approximation using
the non-conforming rotated Qi finite element. It is shown that the estimator
also gives a local lower bound up to a generic constant. The bounds do not
require additional assumptions on the regularity of the true solution of the
underlying elliptic problem and, the mesh is only required to be locally quasi-

uniform and may consist of general, non-affine convex quadrilateral elements.
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1. Introduction

Non-conforming finite element methods are of considerable interest in the numer-
ical approximation of elliptic partial differential equations where issues of stability
and locking [4] may render a conforming scheme practically useless. A large num-
ber of non-conforming finite element methods [7] were developed in the engineering
community on a more or less ad hoc basis and found to produce excellent numerical
results in practice. The mathematical support for such elements only came at a later
stage, followed by the development of new non-conforming elements accompanied
by proofs of stability and convergence [8, 14].

Whilst the topic of a posteriori error estimation for conforming finite element
methods has now matured to a high level of sophistication [2,3,15], the situation
regarding non-conforming finite element schemes is at a relatively primitive stage.
An early important contribution to the theory of a posteriori error estimation for the
non-conforming P triangular finite element of Crouzeix-Raviart [8] was made by
Dari et. al. [10] who obtained two sided bounds on the error measured in the energy
norm up to generic constants. These ideas were later extended to non-conforming
mixed finite element approximation of Stokes flow [9] using the Crouzeix-Raviart
finite element. Hierarchical basis type estimators were explored in [11], whilst [5]
derived estimators based on gradient averaging techniques. More recently, a new a
posteriori error estimator was derived [1] and shown to provide two-sided bounds on
the error and, significantly, the upper bound does not involve any generic constants
meaning that one has a guaranteed computable upper bound on the error measured
in the energy norm.
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The aim of the present work is to extend the ideas of [1] to the non-conforming
rotated Qq element of Rannacher and Turek [14] for meshes of quadrilaterals. The
study of approximation properties on quadrilateral elements is rather delicate owing
to the fact that the mapping from the standard reference element to the physical
element is in general non-affine. This is exacerbated by the fact that, despite its
name, the rotated Q; element does not contain the full approximation space Q,
even in the case of affine elements. Together, these effects may even lead to non-
convergence of the approximation error under certain unfavourable circumstances.
Nevertheless, conditions on the mesh under which the element is able to produce an
optimal rate of convergence are well-understood [12,13] in the context of a priori
error estimation where, roughly speaking, it is found that the elements should not
be too distorted from parallelograms.

Here, we derive a computable a posteriori error estimator that produces an upper
bound on the error in the energy norm that is valid even for non-affine elements.
Moreover, it is shown that the estimator is efficient in the sense that it also gives
a lower bound up to a generic constant independent of the mesh-size. The bounds
are obtained without making any additional assumptions on the regularity of the
true solution of the underlying elliptic problem, and the mesh is only required to
be locally quasi-uniform, thereby allowing the use of an adaptive local refinement
algorithm.

In view of the difficulties in the a priori convergence estimates, one might suspect
the upper bound property of the a posteriori error estimator to degenerate on
meshes containing elements that are too highly distorted. This proves not to be
the case, and it is worth emphasising that our upper bound remains valid under
the very mild assumption that the elements are convex. Of course, the effects
of element distortion may well mean that, by analogy with the actual error, the
estimator converges at a sub-optimal rate. This is to be expected from a reliable
and efficient estimator, but it should be borne in mind that this is a defect of
the underlying mesh and approximation scheme and not of the a posteriori error
estimator. On the contrary, the availability of a computable upper bound means
that one can actually use elements that are more distorted than one might have
been comfortable with from the a priori viewpoint, secure in the knowledge that
if the estimator is sufficiently small, then the overall approximation is acceptable
thanks to the upper bound property of the estimator.

2. Model Problem and Its Non-conforming Discretisation

Consider the model problem of finding u such that
(1) —div(agradu) = f in Q

subject tou =0 on I'p and n-agradu = g on I'y, where 2 is a planar polygonal
domain and the disjoint sets I'p and I'y form a partitioning of the boundary of .
The data satisfy f € Ly(Q2), g € Lo(T'n) and a € L (2) is assumed non-negative.
For simplicity, we shall assume that a is piecewise constant on the finite element
mesh.

The variational form of the problem consists of seeking u € HL () such that

(2) (agradu,gradv) = (f,v) —|—/ gvds Yo € Hp(Q)

I'n
where H5(Q) = {v € H'(Q) : v =0 on I'p}. The notation (-,-), is used to denote
the Lo-inner product over a domain w, with the subscript omitted where w is the
physical domain Q. The corresponding norm is denoted by ||| -



