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Abstract

We examine a steady-state heat radiation problem and its finite element ap-
proximation in Rd, d = 2, 3. A nonlinear Stefan-Boltzmann boundary condition is
considered. Another nonlinearity is due to the fact that the temperature is always
greater or equal than 0[K]. We prove two convergence theorems for piecewise linear
finite element solutions.
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1. Introduction

It is known from physics that a body loses heat energy from its surface by elec-
tromagnetic waves. This phenomenon is called radiation[8,20]. The energetical losses
are proportional to the fourth power of the surface temperature (the Kirchhoff law).
Thus the radiation cannot be neglected when the surface temperature is high (e.g., in
computation of temperature distribution in large dry transformers, electrical engines,
· · ·). It is represented by the nonlinear boundary condition α(u − u0) + n>A grad
u + β(u4 − u4

0) = g̃, where α ≥ 0 is the coefficient of convective heat transfer, u is
the temperature of the body, u0 is the surrounding temperature, n is the outward unit
normal to the surface, A is a symmetric uniformly positive definite matrix of heat con-
ductivities, β = σfem, σ = 5.669×10−8[Wm−2K−4] is the Stefan-Boltzmann constant,
0 ≤ fem ≤ 1 is the relative emissivity function and g̃ is the density of surface heat
sources.

Consider the following classical formulation of the radiation problem: Find u ∈
C2(Ω), u ≥ 0, such that

−div (A grad u) = f in Ω,

u = u on Γ1, (1.1)

αu + n>A grad u + βu4 = g on Γ2,

where Ω ⊂ Rd, d = {2, 3}, is a bounded domain with a Lipschitz-continuous boundary
∂Ω, Γ1 and Γ2 are non-empty disjoint sets, which are relatively open in ∂Ω, and satisfy
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∂Ω = Γ1∪Γ2, f is the density of body heat sources, u ≥ 0 is the prescribed temperature
and g = g̃ + αu0 + βu4

0.
Similar heat radiation problems were investigated by many authors (see, e.g., [3,

8, 18, 19, 21, 22]). A proof of the existence and uniqueness of the classical solution is
given in [2] for a regular boundary.

Throughout the paper we use the standard Sobolev space notation [14, 15, 17]. We
will introduce a variational inequality approach to the problem (1.1) and examine its
finite element approximation under the maximum angle condition. We also generalize
some results of [16, 21] for d = 2 to the three-dimensional space.

2. Variational Formulation of a Two-Dimensional Problem

Since the classical solution of the problem (1.1) need not exist, we introduce its
variational formulation. To this end we suppose that the entries of A belong to L∞(Ω),
f ∈ L2(Ω), u ∈ H1(Ω), α, β ∈ L∞(Γ2) and g ∈ L2(Γ2). Introduce a space of test
functions V = {v ∈ H1(Ω)|v = 0 on Γ1} and a set U = {v ∈ H1(Ω)|v ≥ 0 in Ω, v = u

on Γ1}. It is easy to verify that U is convex, closed with respect to the norm ‖.‖1 and
nonempty as u ∈ U . Note that it has no interior points. (To see this for d = 2 and
(0, 0) ∈ Ω, a simple example can be constructed using the function

vε(x1, x2) = −ε(− ln
√

x2
1 + x2

2)
1/4, (x1, x2) ∈ Ω, ε > 0,

which has a negative pole and ‖vε‖1 → 0 for ε → 0, compare [14, p. 10]).
Define a symmetric bilinear continuous form

a(v, w) =
∫

Ω
(grad v)>A grad wdx +

∫

Γ2

αvwds, v, w ∈ H1(Ω),

and a linear continuous form

F (v) =
∫

Ω
fvdx +

∫

Γ2

gvds, v ∈ H1(Ω).

Using positive definiteness of A, the Friedrichs inequality and the fact that Γ1 6= ∅, we
obtain the V -ellipticity of a(., .),

a(v, v) ≥ C‖v‖2
1 ∀v ∈ V. (2.1)

In this chapter, we will examine the case d = 2. Let v ∈ U be arbitrary and suppose
that a solution u ∈ U of (1.1) exists. Multiplying (1.1) by the function v − u ∈ V and
then integrating over Ω, we get by Green’s theorem the following variational equality

a(u, v − u) +
∫

Γ2

βu4(v − u)ds = F (v − u) ∀v ∈ U.

From here we obviously get the variational inequality

a(u, v − u) +
∫

Γ2

βu4(v − u)ds ≥ F (v − u) ∀v ∈ U. (2.2)


