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Abstract

In this paper, we consider some multigrid algorithms for the biharmonic prob-
lem discretized by Morley element on nonnested meshes. Through taking the aver-
ages of the nodal variables we construct an intergrid transfer operator that satisfies
a certain stable approximation property. The so-called regularity-approximation
assumption is then established. Optimal convergence properties of the W -cycle
and a uniform condition number estimate for the variable V -cycle preconditioner
are presented. This technique is applicable to other nonconforming plate elements.
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1. Introduction

We consider some multigrid algorithms for the biharmonic equation discretized by
Morley element on nonnested meshes. To define a multigrid algorithm, certain in-
tergrid transfer operator has to be constructed. Through taking the averages of the
nodal variables, we construct an intergrid transfer operator for Morley element on
nonnested meshes that satisfies a certain stable approximation property which plays a
key role in multigrid methods for nonconforming plate elements on nonnested meshes.
The so-called regularity-approximation assumption is established by using the stable
approximation property of the intergrid transfer operator. Optimal convergence prop-
erties of the W -cycle and a uniform condition number estimate for the variable V -cycle
preconditioner are obtained by applying the abstract theory of Bramble, Pasciak and
Xu [2]. This technique is applicable to other nonconforming plate elements.

There are some earlier papers on multigrid methods for nonconforming plate ele-
ments. Peisker and Braess [6] considered the W−cycle for the Morley element. Brenner
[3] studied the W -cycle for Morley element through defining the intergrid transfer op-
erator by taking the averages of the nodal variables and simplified the algorithms and
analysis. Shi, Yu and Xie [8] studied the W -cycle for Bergan’s energy-orthogonal plate
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element through defining the intergrid transfer operator by taking a linear combination
of the nodal parameters of the same coarse grid element. Recently, Bramble [1] dis-
cussed variable V -cycle preconditioner for Morley element. All these papers consider
the case when the triangulations are nested.

The paper is organized as follows. In section 2, we briefly describe the Morley
approximation of the biharmonic Dirichlet problem. In section 3, we define an intergrid
transfer operator and establish a certain stable approximation property of the intergrid
transfer operator using a direct technique [9]. In section 4, we describe the multigrid
methods, and establish the optimal convergence properties of the W -cycle and a uniform
condition number estimate for the variable V -cycle preconditioner for Morley element
on nonnested meshes.

2. Morley Element Approximation

We consider the biharmonic problem in Ω with Dirichlet boundary conditions ∆2u =

f , in Ω and u =
∂u

∂n
= 0, on ∂Ω, where Ω is a convex polygon in R2, f ∈ H−l(l = 0, 1).

The variational form of the problem is: Find u ∈ H2
0 (Ω) such that

a(u, v) = (f, v), ∀v ∈ H2
0 (Ω), (2.1)

where
a(u, v) =

∑

|α|=2

∫

Ω
DαuDαvdx, (f, v) =

∫

Ω
fvdx.

Let {Γk}, k ≥ 1, be a family of quasi-uniform triangulations of Ω. Let hk =
max {diamτ ; τ ∈ Γk}. We allow nonnested triangulations; however, we assume that
the mesh parameters hk satisfy 0 < γ1 ≤ hk+1/hk ≤ γ2 < 1, where γi(i = 1, 2) are
constants independent of k. From this assumption we see that for τ ∈ Γk, the number
of elements {τ ′ ∈ Γk−1 or τ ′ ∈ Γk+1; τ̄ ′ ∩ τ 6= φ} is finite and is independent of k. Let
Vk be Morley element space with respect to Γk [4,7] such that

a) for each triangle τ ∈ Γk, u|τ is a quadratic polynomial,
b) u is continuous at vertices and vanishes at vertices along ∂Ω,

c) the normal derivative
∂u

∂n
is continuous at the midpoints of each τ ∈ Γk and

vanishes at midpoints along ∂Ω.
The finite element method of the problem (2.1) is: Find uk ∈ Vk such that

ak(uk, vk) = (f, v), ∀v ∈ Vk, (2.2)

where
ak(u, v) =

∑

τ∈Γk

∑

|α|=2

∫

τ
DαuDαvdx.

Denote the induced norm ‖u‖2,hk
= (ak(u, u))1/2. Let Πk be the nodal interpolation

operator of Morley element from H3(Ω) ∩H2
0 (Ω) onto Vk. The following estimate for

the interpolation error is known (cf.[4, 7]):

‖w −Πkw‖2,hk
≤ Chk|w|H3(Ω) (2.3)

for all w ∈ H3(Ω) ∩H2
0 (Ω). Through this paper we let C (with or without subscripts)


