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Abstract

We establish the convergence theories of the symmetric relaxation methods for
the system of linear equations with symmetric positive definite coefficient matrix,
and more generally, those of the unsymmetric relaxation methods for the system
of linear equations with positive definite matrix.
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1. Introduction

The classical iterative methods, such as the Jacobi method, the Gauss-Seidel method

and the SOR method, as well as their symmetrized variants, play an important role for

solving the large sparse system of linear equations

Ax = b, (1.1a)

where

A = (amj) ∈ L(Rn) is a given nonsingular matrix;

x = (x1, x2, · · · , xn)T ∈ Rn is the unknown vector; and (1.1b)

b = (b1, b2, · · · , bn)T ∈ Rn is a given vector.

In accordance with the basic extrapolation principle of the linear iterative method,

Hadjidimos[1] further proposed a class of accelerated overrelaxation (AOR) method for

solving the linear system (1.1) in 1978. This method includes two arbitrary parameters,

and their suitable choices not only can naturally recover the Jacobi, the Gauss-Seidel

and the SOR methods, etc., but also can considerably improve the convergence property

of this AOR method. After many authors’ extensive and deepened researches, the

convergence theories of the afore-mentioned relaxation methods have been established

in a more complete manner when the coefficient matrix of the linear system (1.1) is
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an L-matrix, an M -matrix, an H-matrix, and a symmetric positive definite matrix,

respectively. For details one can refer to [1]–[7] and references therein.

Based on Hadjidimos’ work[1], many researchers have designed the symmetrized and,

more generally, the unsymmetrized versions of the AOR method, called as the SAOR

method and the UAOR method, respectively, and discussed in detail the convergence

properties of these methods under the conditions that the coefficient matrix of the linear

system (1.1) is either an L-matrix, or an M -matrix, or an H-matrix. For more details

one can see [4] and references therein. These studies not only afford efficient algorithm

choices for the linear system (1.1), but also establish systematical convergence theories

for the relaxation methods.

However, to our knowledge, except for the symmetric positive definite matrix with

property–A, there is no convergence result about either the SAOR method or the

UAOR method for general (symmetric) positive definite matrix class. The difficulty

seems to be that the commutativity as in the SSOR method does not still hold in these

methods. In this paper, we will emphatically establish the convergence theory of the

SAOR method for the symmetric positive definite matrix class, or more generally, that

of the UAOR method for the positive definite matrix class.

2. Reviews of the Relaxation Methods

More generally, from now on, we will turn to consider the system of linear equations

(1.1) which has the following partitioned form:

A =









A1,1 A1,2 · · · A1,N

A2,1 A2,2 · · · A2,N

· · · · · · · · · · · ·

AN,1 AN,2 · · · AN,N









, x =











x1

x2
...

xN











, b =











b1

b2
...

bN











, (2.1a)

where

Ai,j ∈ L(Rnj , Rni), xi, bi ∈ Rni , i, j = 1, 2, · · · , N (2.1b)

and ni (i = 1, 2, · · · , N) are positive integers satisfying

n1 + n2 + · · · + nN = n. (2.1c)

Also, we will stipulate that Ai,i (i = 1, 2, · · · , N) are nonsingular matrices.

If we take

AD = diag (A1,1, A2,2, · · · , AN,N ),

AL =





















0

−A2,1 0
...

. . .
. . .

...
. . .

. . .

−AN−1,1 · · · · · · −AN−1,N−2 0

−AN,1 · · · · · · −AN,N−2 −AN,N−1 0










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
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