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Abstract

In this paper, the generalized complementarity problem is formulated as an
unconstrained optimization problem. Our results generalize the results of [9]. The
dimensionality of the unconstrained problem is the same as that of the original
problem. If the mapping of generalized complementarity problem is differentiable,
the objective function of the unconstrained problem is also differentiable. All the
solutions of the original problem are global minimizers of the optimization problem.
A generalized strict complementarity condition is given. Under certain assump-
tions, local properties of the correspondent unconstrained optimization problem
are studied. Limited numerical tests are also reported.

1. Introduction

The complementarity problem, a special case of variational inequality problem, has

many applications in different fields such as mathematical programming, game theory,

economics. Generally, the standard complementarity problem has the following form:

y = F (x), x ≥ 0, y ≥ 0, 〈y, x〉 = 0, (1.1)

where 〈·, ·〉 denotes the inner products. When F (x) is an affine function of x, it reduces

to the linear complementarity problem which is denoted by LCP. Otherwise we call it

the nonlinear complementarity problem or simply NCP. The complementarity problem

has attracted many researchers since its appearance and many results have been given,

a nice survey is given by [3]. The LCP problem, can be converted as a special linear

programming or quadratic programming in the nonnegative orthant of Rn, thus many

classical methods for linear programming are used to solve the LCP problem[10]. For

the NCP problem, people often use so called NCP functions and formulate the NCP as

a system of equations or unconstrained optimization problem, then classical methods

for unconstrained optimization can be applied[4,7,8,11].

The generalized complementarity problem, denoted by GCP (X,F ), is to find a

vector x∗ ∈ X such that:

F (x∗) ∈ X∗, and 〈F (x∗), x∗〉 = 0, (1.2)
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where X is a convex cone in Rn, X∗ = −X0, and X0 is the polar cone of X [12]

X0 = {y ∈ Rn : 〈y, x〉 ≤ 0, ∀ x ∈ X}. (1.3)

It is obvious that when X is the nonnegative orthant of Rn, (1.2) reduces to the NCP.

Although (1.2) was proposed and studied twenty-years ago [5], [6], little attention has

paid to it. Traditionally it was considered as a variational inequality problem, which

has the following standard form:

x∗ ∈ X, and 〈F (x∗), y − x∗〉 ≥ 0, ∀ y ∈ X, (1.6)

which usually denoted by V I(X,F ). Then we use the same methods for VI problem to

solve it. In doing so, through variational principle, a merit or gap function is applied,

then we approach the solution of the GCP by minimizing the merit function.

Recently, some new interesting results for these problems are reported. In [2],

through projection operators, the problem (1.4) is reconsidered as differentiable op-

timization problem. The objective function has some desirable global properties. In

[9], for the NCP (1.1), the authors proposed unconstrained methods which mainly

derived from an augmented Lagrangian formulation. Under certain conditions, the

unconstrained problem has excellent local properties.

The main purpose of this paper is to generalize the results of [9] to the case where

X is a convex cone. In the following section, we first describe some notations and

concepts which will be used in the paper, similar to [9], we first consider a generalized

augmented Lagrangian formulation. Then we show that this formulation equals to the

difference of two functions defined in [2]. In section 3, some global properties of the

optimization problem are discussed. A generalized strict complementarity condition

is also considered. Under certain assumptions, we discuss the local properties of the

optimization problem. Some numerical results are reported in the last section.

2. Preliminaries

First, we give some basic definitions [5], [6]:

Definition 2.1. Let Ω be a nonempty subset of Rn; then

(i): Ω is a cone if x ∈ Ω ⇒ λx ∈ Ω for all reals λ ≥ 0;

(ii): Ω is a convex cone if x ∈ Ω, y ∈ Ω ⇒ λx + µy ∈ Ω for all reals λ ≥ 0, µ ≥ 0;

(iii): Ω is solid if it has nonempty interior relative to Rn.

In the rest of this paper, except for special description, we assume that the constraint

set X is a closed solid convex cone, which means that problems (1.4) and (1.2) are

equivalent. Similar to [5], [6], we define a partial ordering on Rn as follows: x
X
≥ y if

and only if x− y ∈ X and x
X
> y if and only if x− y ∈ int(X). Now we can reformulate

(1.2) as the following constrained minimization problem:

min
x

{

〈F (x), x〉
∣

∣

∣x
X
≥ 0, F (x)

X∗

≥ 0
}

. (2.1)


