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Abstract

This paper considers the concave minimization problem with linear constraints,
proposes a technique which may avoid the unsuitable Karush-Kuhn-Tucker points,
then combines this technique with Frank-Wolfe method and simplex method to
form a pivoting method which can determine a strictly local minimizer of the
problem in a finite number of iterations. Basing on strictly local minimizers, a new
cutting plane method is proposed. Under some mild conditions, the new cutting
plane method is proved to be finitely terminated at an e-global minimizer of the
problem.

1. Introduction

This paper considers the following nonlinear programming problem
(NLP) min{f(z) |z € C },

where f(z) is a strictly concave function and C C R"™ is a convex polytope which will
be specified later. It’s well known that if (NLP) has a solution, then the minimum
value can be attained at a vertex of the constraint. Generally speaking, this problem
is NP-hard [1]. The ordinary descent methods usually generate a sequence of points
which converges to a Karush-Kuhn-Tucker point of (INLP) under some conditions.
Unfortunately, this Karush-Kuhn-Tucker point can not be guaranteed to be a local
minimizer even if it satisfies the second order necessary conditions.

The purpose of this paper is to propose a technigue for eliminating the unsuitable
Karush—Kuhn—Tucker points. By combining this technique with Frank-Wolfe method
and simplex method we form a descent method for (N LFP). Under some mild conditions
it is proved that, in a finite number of iterations, the method stops at a strictly local
minimizer of (NLP). This kind of result was first obtained in [2] for a special class
of problems they called concave knapsack problems. In their paper, they also gave
out a tight complexity lower bound for their method. Although the global minimizer
can not be guaranteed, the strictly local minimizer can provide good approximation
to the global solution of (NLP) and they are very useful in the branch—and—bound
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algorithms for the global optimization. Basing on the strictly local minimizer, we will
further present a new cutting plane method which can be viewed as a revised version
of Tuy’s cutting plane method [3].

The convergence of Tuy’s cutting plane method is still an open problem except we
add some extra conditions on the method itself [4], [5], [6]. The new cutting plane
method uses an € procedure and an alternative implicit vertex enumerating procedure
and is therefore finitely convergent without any extra assumptions.

The paper will be organized as follows. In section 2 we will introduce some assump-
tions and notations; describe the finitely convergent algorithm for the strictly local
minimizers and the corresponding convergence analysis. In section 3 we will present
a new cutting plane method for the e-global minimizer and its theoretical analysis.
Section 4 will be the conclusion section.

2. Finding The Strictly Local Minimizer
This section considers the following concave minimization problem
(P) min{ f(z) | = € R},

where f(z) is a strictly concave function, R = {z|Az = b,z > 0}, A € R™*", b€ R™.
Throughout of this section, we will make and use the following assumptions and
notations.
Assumption 1 f(x) us strictly concave and continuously differentiable.
Assumption 2 R is nonempty, bounded and rank(A) = m.
Notations: N = {1,2,---,n}, M ={1,2,---,m}, A = (a;jlt € M,j e N). f JC N,
L C M, then A = (a;|s € L,j € J), when J = N or L = M, we also simply set
A = AY or A7 = A For a given subset I C N with |I| = m, | * | designates the
cardinality of *, if A’ is invertible, then set T(I) = (A’)"'A and t(I) = (AT)~'b. If
t(I) > 0, then I is called a basis. Let I = N\I, T'(1) = (A")~' AT and T/ is the rth row
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of T*(I). For a given basis [ and x € I;, let z = (z1,27), Vf(z) = (Bwl’ D25’ ,8$n)’
0 _ _
Vif(z) = (b?fll € I), vif(z) = (b;f[z € I). It’s clear that x; = t(I) — T (I)zy. If

we define f(z7) = f(t(I) — T!(I)x}, xj), then we have

vi(ep) = vif(@) - vif(@)T(1). (1)

This formula just designates what is usually called the reduced gradient of f(z). conv(x)
and vol(x) will represent the convex hull of * and the volume of * respectively. @ denotes
the empty set.

It can be seen that the above notations inherit that of the simplex method for linear
programming except the cost vector now is 57 f(x). The following algorithm is designed
for finding the strictly local minimizer of the problem (P).

Algorithm I

o Initilization

Given a vertex z¥ of R, let I be its corresponding basis, set k = 0.

Step 1. Calculate vf_(:c’lf) and Tj(l) .




