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Abstract

The multigrid algorithm in [13] is developed for solving nonlinear parabolic

equations arising from the finite element discretization. The computational cost

of the algorithm is approximate O(NkN) where Nk is the dimension of the finite

element space and N is the number of time steps.

1. Introduction

The finite element methods for solving nonlinear parabolic problems are studied by

many authors, such as Douglas and Dupont[5], Wheeler[4], Luskin[3], etc. They proposed

various ways of computing the problems and proved the optimal order convergence rates

of the methods, such as the linearized methods, the predictor-corrector methods, the

extrapolation methods, the alternating direction methods and the iterative methods[2],

etc. The multigrid methods for solving parabolic problems are studied by some authors,

such as Hachbusch[14,15], Bank and Dupont[12], Brandt and Greenwald[16] as well as

Yu[13]. But these methods are given mainly for linear parabolic equations. For nonlinear

parabolic problems Hachbusch and Brandt in [14], [15], [16] gave the multigrid methods

by using the integral differential equation and the frozen-τ technique.

In this paper we present a multigrid procedure for two-dimension nonlinear parabolic

problems. The method is an extension of our earlier algorithm in [13] for linear parabolic

problems. The iterative methods for solving the system of nonlinear algebraic equations

are avoided because the unknown function Un+θ
k in the nonlinear coefficient a(x,Un+θ

k )

and the right term f(x, t, Un+θ
k ) in the system of nonlinear algebraic equations is re-

placed by IkU
n+θ
k−1 in the multigrid procedure, where Ik denotes an intergrid transfer

operator, θ a weighted function and Un+θ
k−1 the solutions of the equation in the (k-1)th

level. We analyze the convergence of our algorithm and the computational cost of N
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time steps. The asymptotically computational cost is O(NNk) where Nk is the dimen-

sion of the discrete finite element space and N is the number of time steps. In addition,

the methods can be applied to more general nonlinear parabolic problems.

The paper is organized as follows. In Section 2, we give the basic assumptions and

properties by using of the finite element discretizing a nonlinear parabolic equation.

In Section 3 we extend the time-dependent fully multigrid algorithm in [13] to the

nonlinear parabolic equation. In Section 4 we analyze the convergence of the algorithm

and in Section 5 we consider the computational cost and the development.

2. Notations and Preliminaries

We consider nonlinear parabolic initial value problems as follows:

{ ∂u∂t = ∇(a(x, u)∇u)+f(x, t, u), (x, t) ∈ Ω × [0, T ], u(x, t) = 0, (x, t) ∈ ∂Ω × [0, T ], u(x, 0) = u0(x), x ∈ Ω, 2.1

where Ω ⊂ R2 is a convex polygonal domain, ∇ is a gradient operator on x = (x1, x2)

directions. Assume that the nonlinear coefficient a(x, p) satisfies the condition: there

are constants K0, K1 > 0 such that

0 < K0 ≤ a(x, u) ≤ K1, ∀(x, p) ∈ Ω̄ ×R1.2.2

a(x, p) and f(x, t, p) hold uniformly Lipschitz condition with respect to p, i.e., there is

a constant L > 0 such that

|a(x, p1)−a(x, p2)| ≤ L|p1−p2|, ∀(x, p) ∈ Ω̄×R1, |f(x, t, p1)−f(x, t, p2)| ≤ L|p1−p2|, ∀(x, t, p) ∈ Ω̄×[0, T ]×R1.2.3

Further assume that for any t ∈ [0, T ], f(x, t, 0) ∈ L2(Ω). Thus by (2.3), we have

|f(x, t, v(x, t))| ≤ |f(x, t, 0)| + L|v(x, t)| ∈ L2(Ω), ∀v(x, t) ∈ L2(Ω).

The variational form of problem (2.1) is : Find a continuously differentiable mapping

u(t) = u(x, t) : [0, T ] → H1
0 (Ω) such that

{ ( ∂u∂t, v) + a(u;u, v) = (f(u), v), (u(x, 0), v) = (u0(x), v), ∀v ∈ H1
0 (Ω).2.4

where a(u;u, v) =
∫

Ω a(x, u)∇u∇vdx, (f(u), v) =
∫

Ω f(x, t, u)vdx.

Under the assumptions (2.3) and (2.4), a solution of the variational problem (2.4)

such that ‖∇u‖L∞(L∞) < +∞, if it exists, must be unique where ‖∇u‖L∞(L∞) is defined

by

‖∇u‖L∞(L∞) = ‖‖∇u‖L∞(Ω)‖L∞[0,T ].

In the following we assume that a solution of the problem (2.4) exists and is unique.

And the solution is smooth enough for the finite element analysis.

Let Γ be a mesh partition of the domain Ω (the triangulation or quadrilateral

partition) which satisfies the partition quasi-uniformity conditions [17]. Since Ω is a


