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Abstract

In this paper, a finite difference scheme for the linear and nonlinear models

of wheezes are given. The stability of the finite difference scheme for the linear

model is obtained by using of von Neumann method. Moreover, the convergence

and stability of the finite difference scheme for the nonlinear model are studied by

the energy inequalities method. By some numerical computations, the relation-

ships between angular frequency and wall position, fluid speed and amplitude are

discussed. Finally, the author shows that the numerical results are coincided with

Grotberg’s theoretical results.

1. Introduction

In order to study the pitch of wheezes in patients, J.B.Grotberg and others have

given a class of mathematical model of wheezes[1,2]:
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u = Φx, w = Φz, (1.1)

△Φ = 0, (1.2)

Φt + 1
2∇Φ · ∇Φ + 2RfΦ + P − Pa = 0, (1.3)

MWtt + 2RwWt + BWxxxx + 1 + W + β(1 + W )3 − TWxx + P − Pe = 0. (1.4)

Where △ and ∇ are the Laplace operator

and gradient operator, respectively. The

Cartesian components (u,w) are the dimen-

sionless axial fluid velocity and dimensionless

vertical fluid velocity respectively. Φ(x, z, t)

is the velocity potential function, P is the di-

mensionless fluid pressure determined from the
Fig. 1

unsteady Bernoulli equation (1.3), Pa is the steady driving pressure, Pe is the external

pressure. M,Rw, B, β and T are wall-to-fluid mass ratio, dimensionless wall damping

coefficient, bending stiffness to elastance ratio, nonlinear elastance coefficient and ap-

plied longitudinal tension to elastance ratio, respectively. The geometry and physical

parameters of the problem are indicated in Fig.1.
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Generally, Φ(x, z, t) is a travelling wave like in [1,2]:

Φ(x, z, t) = Ai
ω − kS

k sinh k
cosh(kz)eiθ (2)

where ω is the dimensionless angular frequency, k is the wave number defined by

k = 2πb/L and L is the dimensionless wavelength, S is the dimensionless fluid speed,

A is an arbitrary constant, θ = kx−ωt. It is very easy to check that (2) satisfies (1.2).

Let Pe = Pa − 2RfSx − S2/2[1]. In this paper, we shall discuss the periodic problem

with the travelling wave Φ(x, z, t), then equation (1) can be rewritten as the following:
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MWtt + 2RwWt + BWxxxx + q(1 + W ) − TWxx = f(x, t), (x, t)ǫR × I, (3.1)

W (x + λ, t) = W (x, t), (x, t)ǫR × I, (3.2)

W (x, 0) = W0(0), xǫR, (3.3)

Wt(x, 0) = Wt(x), xǫR. (3.4)

Where f(x, t) = [Φt + 1
2∇Φ · ∇Φ + 2RfΦ] |z=−1 −(2RfSx + S2/2) and q(1 + W )

= 1 + W + β(1 + W )3. W is an unknown function. R is the real line and I = [0, T1].

J.B.Grotberg and other authors[1,2] discussed the standing wave solutions for sys-

tem (1). While the solutions are not standing wave, the methods in [1,2] are in-

valid. Zho Yulin[3] gave the weighted difference schemes, but the weighted coefficient

αislimitedin[12 , 1]. Therefore the difference schemes are implicit. In this paper, we

shall give an explicit difference approximation and study the convergence and stability.

2. Finite Difference Scheme and It’s Stability for the Linear Equation

Let τ, h be time-step and space-step lengths, respectively. J = [λ/h], N = [T1/τ ].

xj = jh, tn = nτ . 0 ≤ j ≤ J , 0 ≤ n ≤ N . Where [y] denotes the larger integer which is

not greater than y. Notation W n
j is the approximation of W (xj , tn). A finite difference

scheme is given as follows:

For 0 ≤ j ≤ J
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MW n
jtt̄ + 2RwW n

jt̂
+ BW n

jxxxx + q(1 + W n
j ) − TW n

jxx̄ = fn
j , 0 < n < N, (4.1)

W n
j+rj = W n

j , 0 ≤ n ≤ N, (4.2)

W 0
j = W0(xj), (4.3)

W 0
t = Wt(xj). (4.4)

Where W n
jt = (W n+1

j −W n
j )/τ, W n

jt̄ = (W n
j −W n−1

j )/τ and W n
jt̂

= (W n+1
j −W n−1

j )/(2τ).

Similarly, we can define W n
jx and W n

jx̄.

In the following we consider the von Neumann stability of the finite difference

scheme for the linear equation of (3), i.e. q(1 + W ) = 1 + W, β = 0. Say en
j =

W n
j − Ŵ n

j , where W n
j and Ŵ n

j are the solution of the finite difference scheme for the


