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Abstract

In this paper, we develop a one-parameter family of P-stable sixth-order and
eighth-order two-step methods with minimal phase-lag errors for numerical inte-
gration of second order periodic initial value problems:

y" = f(t,y), y(to) =vo, ¥ (to) =y

We determine the parameters so that the phase-lag (frequency distortion) of these
methods are minimal. The resulting methods are P-stable methods with minimal
phase-lag errors. The superiority of our present P-stable methods over the P-
stable methods in [1-4] is given by comparative studying of the phase-lag errors
and illustrated with numerical examples.

1. Introduction

The development of numerical integration formulae for the direct integration of the
periodic initial-value problem

y' = fty), ylto) =0, ¥ (to) =10, (1.1)

which arises in the theory of orbital mechanics and in the study of wave equations, has
created considerable interest in the recent years.
Usually, the Numerov’s method

h2
Ynt+1 = 2Yn — Yn—1 + E(fn-&-l +10f, + fu-1) (1.2)

is the most popular method. Although, Numerov’s method has phase-lag of order four
and possess only a finite interval of periodicity (0, 2.449%). Recently Chawla and Raol23]
developed fourth-order and sixth-order P-stable methods with phase-lag of order six.
Ananthakrishnaiah® obtained a two-parameter family of second order P-stable
methods Ms(a, 3) with phase-lag of order six. It is therefore natural to ask whether we
can obtain P-stable methods with phase-lag order and accuracy order higher than the
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methods in [1-4]. The purpose of this paper is by modificating the methods in [1-4]
and selecting parameters suitably, to obtain a new family of methods with sixth-order
and eighth-order. Comparing with the methods in [1-4], our methods are more useful
when a large step-size is used, that is , when a modest accuracy is sufficient or the
solution which consists of a slowly varying oscillation with a high-frequency oscillation
superimposed, has a small amplitude. At the end of this paper we give two examples
to demonstrate that our methods are better than the methods in [1-4].

2. Basic Theory
When we apply an symmetry implicit two-step method to the test equation
y'=-Xy, A>0, (2.1)
we obtain the polynomial
Q(¢,H?) = A(H)E? —2B(H)E + A(H), H = Mh. (2.2)

It is stability and (&, H?) = 0 is characteristic equation, A(H) and B(H) are polyno-
mials of H = Ah.

Definition 1. (Lambert and Watson®))  The method with stability polynomial
(2.2) is said to have interval of periodicity (0, H?) if for all H*> € (0, H}), the roots &1 5
of Q(&, H?) satisfy

€10 = 0D (2.3)

for some real valued function 6(H).

Definition 2.  The method with stability polynomial (2.2) is said to be P-stable
if its interval of periodicity is (0,00).

It is easy to see that the roots of (2.2) are complex and of module one if

B(H)
——<1. 2.4
< (24)
Thus, the P-stability condition is satisfied if
A(H)+ B(H) >0 and A(H) — B(H) > 0, for all H? € (0, 0) . (2.5)

The exact solution of the test equation (2.1) with the initial condition y(to) = yo
and y'(ty) = y; is given by

/
y(t) = yo cos At + y—; sin At . (2.6)

Evaluating (2.6) at t,+1,t, and t,—1 and eliminating yo and y;, we obtain

Y(tnt1) — 2cos Ahy(tn) + y(tn—1) =0, (2.7)



