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Abstract

We discuss the Hermite-type collocation method for the solution of Volterra
integral equation with weakly singular kernel. The constructed approximation is
a cubic spline in the continuity class C!. We prove that this method is convergent
with order of four.

1. Introduction

This paper considers the numerical solution of the second-kind Volterra integral
equation

y(t) + (Ky)(t) = g(t), (L.1)

where y(t) is the unknown solution, ¢(¢) is a given function and K is the integral
operator for some given kernel function K,

(K0 = [ Kl 2as (1.2

Such equations arise from certain diffusion problems. Because K is not compact, so
the standard stability proofs for numerical methods do not fit.

Many people have worked on Hermite-type collocation methods for second-kind
Volterra integral equations with smooth kernels!®%56 but very few deal with weakly
singular kernels. Papatheodorou & Jesanis (1980) considered Volterra integro-
differential equations with weakly singular kernels. Diogo, Mckee & Tang (1991) in-
vestigated a Hermite-type collocation method for (1.1) with a singular kernel of the

form K (o) = m, > 1. They also considered two low-order product integration
1 (10]

methods for the solution of (1.1) with a singular kernel of the form K (o) = NN
For general kernel K (o), no papers have appeared to discuss it.
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In this paper, first we would to show that a unique smooth solution exists when
a= [~ @da < 1. The basic idea is to derive two (linear) Volterra equations for y(t)
and y/(t) by transforming the original integral equation. Having the coupled equations
for both y(t) and y/(t), we can then employ piecewise cubic Hermite polynomials to
obtain numerical solution of (1.1). Finally, the convergence analysis is given.

2. Preliminaries

Let C™[0.7] denote the Banach space of mth order derivative continuous real-valued
functions with the uniform norm

— (4)
Il llmco= jmasx mmade, [u™ ()]

Our assumption on K is

:/1°O|K(U)|da<1. (2.1)

o
Lemma 1. If g € C™[0,T] and (2.1) is satisfied, then (1.1) possesses a unique
solution y € C™[0,T1.
Proof: Choosing an arbitrary function v(t) € C™[0,T], and defining u = S(v) such
that

u(t) —|—/tK(E)U(8)§d8 —g(t), te[0,T] (2.2)

where S(v) = — fO ds +g(t).
Setting s = )\t we have

1
/ K ds - / K(S)on)San . (2.3)
0 A A
Since v € C™[0,T] and g € C™[0,T], we obtain from (2.2) and (2.3) that
/ K Yo AN LN + g9(1), (2.4)

where 0 < j <m. If uy = S(v1) and ug = S(v2), we have

Wl — W) < JHE GNP (M) — o (At)]dA

(2.5)
< fO |K % |/\_1d)\ || V1 — V2 ||m,oo .
Noting that the coefficient of the last term of (2.5) equals «, it follows that
a1 — w2 |[meo< a || v1 = v2 [|moo - (2.6)

The inequality (2.6) implies that the operator S is a contraction mapping. Since C™
is a complete normed space, S has a unique fixed point y(t) € C™[0,T] such that
y = S(y). This completes the proof.



