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NUMERICAL ANALYSIS OF NONSTATIONARY THERMISTOR.
PROBLEM*V

| Yue Xing-ye
(Suzhou University, Suzhou, Jiangsu, China)

Abstract

The thermistor problem is a coupled system of nonlinear PDEs which consists of
the heat equation with the Joule heating as a source, and the current conservation
equation with temperature dependent electrical conductivity. In this paper we
make a numerical analysis of the nonsteady thermistor problem. L°(Q2), W1 ((2)

stability and error bounds for a piecewise linear finite element approximation are

given. £

1. A Mathematical Model and a Discrete Scheme

The model of a nonstationary thermistor problem is derived from the conservation
laws of current and energy (see [1] [2] [3]): |
Find a pair {¢,#} such that

V - (o(u)Vp) =0 in Qr=90x(0,T), (1.1)
© = Qg on 89 x (0,T), | (1.2)
u— Du=o0cu) | Ve [* in Qr, (1.3)
u=0 on 890 x(0,T), (1.5)
w(z,0) =uo(z) in (1.5)

where @ C RY(N > 1) is a bounded domain, occupied by the thermistor; ¢ = ¢(x, 1),
v = u(x,t) are distributions of the electrical potential and the temperature in £,
respectively; o(u) is the temperature dependent electrical conductivity; o(u) | Ve |?
is the Joule heating. Throughout this paper, we assume that 0 < 61 < 0(s8) < @@ <
+oo Vs, € RL.

There has been interest in the problem mathematically (see [1] [2] [3]+and references
therein recent mathematical. Yuan [3] proved the following result.
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Theorem 1. If gy € L0, T;CF(Q), up € C*H{M) N Hy{), 0 < a <,
o(s) € C° (Rl) then problem (1.1)~1.5) has a unige solution (p,u) satisfying

u e CP4(Qr), ¢ € L(0, T; C*+(Q))
and

lull 6.8 £ = < C, |l pooo,rior+8@y) < ¢

where 8 € (0,0), and C depends only on the given data.

As a corollary, we have

Theorem 2. Under the conditions of Theorem 1 and o(s) € CY{R'), ¢g €
L=(0,T; HX(Q)),

(1) If uo € H2() N HY(N), then

we W2 (Qr), V2<P<+o0; ¢€L®0,T;HY Q)  (18)
(2) If uo € H3(Q) N Hg(9Y), then
s € WE(Qr), V2 < P < +oo; u € L®(0,T; H*(Q)) (1.7)

Proof. (1) From Theorem 1, o(u) | Vo |?€ L®(Q7). By the standard parabolic
estimate!”, (1.3). gwes
ue Wil (Qr), Y¥2<P<+x.

Furthermore, by the Corollary in |7]
" 3y e(0,1), ug €C'(Qr), i=12,---, N

Therefore, o(u) € C°(0,T; C*(2)).
By the standard elliptic estimate, from (1.1) we get

¢ € L®(0,T; H*(Q))
(2) From (1.3), we gain
oot — Dotia, = o (Whtiz; | Vo | +20(u) Vo - Vigi € L2(Qr).

It follows that
Uz, € W2 (Qr), V2 < P < +o0. (1.8)

Hence, u; € W;,’O(QT), V2< P < +00.
On the other hand, by the embedding theory, we again have

3 € (0,1), uz,z; € CY (Q1), 6,5 =1,2,+--,N.

Now the theorem is proved.
Problem (1.1)—(1.5) has a weak form as follows, Find u € H (), ¢ € wp + H(S2),

such that
(o(u)Ve, Vi) =0, te(0,T), V¥¢€ Hy(Q), (1.9)

(ug, v) + (Vu, Vo) = (o(u) | Ve 2, v) te€ (0, T)l, Vo € H) (Q),
' (1.10)

w(z,0) = uo({x), = €Q, (1.11)



