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Abstract

In this paper a new approach for time discretization of an integro-differential
equation of parabolic type is proposed. The methods are based on the backward-
Euler and Crank-Nicolson Schemes but the memory and computational require-
ments are greatly reduced without assuming more regularities on the solution u.

1. Intfoduction

We consider the time discretization of the equation

T
ug + Au = fﬂ b(t,s)Bu(s)ds + f(t), 0<t<T, (1.1)
u(0) = v,

where A is an unbounded positive definite self-adjoint operator with dense domain
D(A) in a Hilbert space H and B is another operator with domain D(B) D D(A).
The kernel b(¢, s) is assumed to be a smooth real-valued function of both ¢ and s for
0 <s<tand f(t) € H is a smooth function.

This type of problem occurs in applications such as heat conduction in material with
memory, compression of poro-viscoelastic media, nuclear reactor dynamics, etc. The
numerical solution by means of spatial discretization by finite differences and finite
element methods has been studied by several authors; see V. Thomee |2] and the
references cited there.
~ In this paper, we shall restrict our attention to the time discretization of such
problems. A standard way of time discretization is to employ the quadrature formula

t n—1
|7 ale)ds = 3 wasglik), (1.2)
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where k denotes the time step, e.g., the left rectangle rule and the trapezoidal rule are
simple quadrature rules which are consist with O(k) accuracy of the backward-Euler
scheme and with O(k?) accuracy of the Crank-Nicolson scheme , respectively.

Let t.. = nk and U™ be the approximation of u(¢,) and f* = f (tn). Also we define
the backward difference operator by

n__ Fn—l1
gum =2 kU | (1.3)

Let o}(g) = kz_}‘;& g(t;) and o3(g) = 1kg(0) + ;:& g(t;) be the left rectangle rule
and the trapezoidal rule respectively. Then, the standard backward Euler and Crank-
Nicolson schemes are |

™ 4 AU = a7 (b, B n, =il dy ¥
BE - 0 U™ = o} (b{tn,s)BU)+ ", n=1 (1.4)
% = V;
o Un+Un—1 - i 4
— + A(— : ) = o3 (b(t,_1,9)BU) + 773, n=12-, (g

=

where o7 (b(tn,s)BU) =k Z}:& b(tn,t;)BUI and o7 is similar.

A practical difficulty of these methods is that all {/7 need to be stored as they all
enter the subsequent equations; hence the number of U 7 which have to be stored is of
order O(3) per unit time. |

In order to reduce the memory requirement, Sloan and Thomeel!! proposed more
economical schemes by using quadrature rules with higher order truncation errors. For
example, in order to retain the accuracy of the backward Euler scheme, they used the
trapezoidal rule with mesh size k1 = O(vk) on [0,t;,] and the rectangle rule with
mesh size k on the remaining small part [t;,,%s], where t;;, = max{jk1} (Gk1 < tn-1)-
For this scheme, the storage requirements are reduced from O(i—) to O(Z}'_E) per unit
time. Likewise, a combination of Simpson’s rule and the trapezoidal rule preserves the
accuracy of the Crank-Nicolson scheme. Because of using higher order quadratures,

the regularity requirement of the solution u is very severe.
The results here are based on the following iterative relations for the quadrature:

n—1 i
) =k 3 o6) = 7@ +hatas) (= [Toids ). (19)

J

n—1 “
o3(9) = 2kg(0) +E 3 (ts) = 05 (g) + k(tn-1)
: =0

(= [ o ); 07

#2(g) = — 5 kg(0).



