CONSTRUCTION OF VOLUME-PRESERVING DIFFERENCE SCHEMES FOR SOURCE-FREE SYSTEMS VIA GENERETING FUNCTIONS*1)

Shang Zai-jiu
(Institute of Mathematics, Academia Sinica, Beijing, China)

1. Introduction

Source-free dynamical systems are of great importance in many branches of physics. A significant subject for such systems is to design "proper" numerical algorithms. Since the phase flows of source-free systems are volume-preserving transformations on the corresponding phase space, the proper way consists in the requirement that the step-transition maps of the algorithms are volume-preserving. We call such algorithms volume-preserving algorithms. In [5], Thyagaraja and Haas designed volume-preserving algorithms for 3-dimensional source-free systems based on a type of generating function representations of volume-preserving mappings on \mathbb{R}^3 . in [1], Feng Kang and the author gave a more general method to construct volume-preserving difference schemes for general n-dimensional source-free systems based on the decomposition of a source-free vector field on \mathbb{R}^n into a sum of n-1 essentially 2-dimensional Hamiltonian vector fields and on the well known symplectic difference schemes for 2-dimensional Hamiltonian systems. In this paper, we present another general method for the same purpose whose basis is the generating function apparatus for volume-preserving mappings and Hamilton-Jacobi theory for source-free systems, which have both been well developed by the author^[4]. We emphasize that our method presented in this paper provides volume-preserving algorithms for arbitrarily dimensional source-free systems with arbitrarily high order of accuracy which are implicit only in one coordinate and therefore, is superior to the methods given in [5] and in [1] which only provide first order and highly implicit volume-preserving difference schemes respectively.

2. Basic Theorems

The theorems in this section are important to the construction of volume-preserving difference schemes for source-free systems in the next section.

^{*} Received August 24, 1993.

¹⁾ The Project Supported by State Commission of Science and Technology and National Postdoctoral Science Foundation of China

Theorem 2.1. Let $\alpha = \begin{pmatrix} A_{\alpha} & B_{\alpha} \\ C_{\alpha} & D_{\alpha} \end{pmatrix} \in GL(2n)$. Denote $\alpha^{-1} = \begin{pmatrix} A^{\alpha} & B^{\alpha} \\ C^{\alpha} & D^{\alpha} \end{pmatrix}$.

Let $g: \mathbb{R}^n \to \mathbb{R}^n$ be a differentiable volume-preserving mapping satisfying the transversality condition

 $\left| C_{\alpha} \frac{\partial g}{\partial z}(z) + D_{\alpha} \right| \neq 0 \tag{2.1}$

in a neighborhood of some $z_0 \in \mathbb{R}^n$. Then there exists a differentiable mapping $f(w) = f_{\alpha,g} = (f_1(w), f_2(w), \dots, f_n(w))^T$ satisfying condition

$$\left| \frac{\partial f}{\partial w}(w)C_{\alpha} - A_{\alpha} \right| = \left| B_{\alpha} - \frac{\partial f}{\partial w}(w)D_{\alpha} \right| \neq 0 \tag{2.2}$$

in a neighborhood of the point $w_0 = C_{\alpha}g(z_0) + D_{\alpha}z_0$ in \mathbb{R}^n such that the mapping $\hat{z} = g(z)$ can be reconstructed from $f = f_{\alpha,g}$ by the relation

$$A_{\alpha}\hat{z} + B_{\alpha}z = f(C_{\alpha}\hat{z} + D_{\alpha}) \tag{2.3}$$

in a neighborhood of the point z_0 in R^n . Conversely, let $f(w) = (f_1(w), \dots, f_n(w))^T$ be a differentiable mapping satisfying condition (2.2) in a neighborhood W of the point w_0 in R^n . Then the relation (2.3) gives a volume-preserving mapping $\hat{z} = g(z)$ satisfying the transversality condition (2.1) in a neighborhood of the point $z_0 = C^{\alpha} f(w_0) + D^{\alpha} w_0$ in R^n .

Remark 1. Locally speaking, a volume-preserving mapping is completely given from matrix $\alpha \in GL(2n)$ and mapping $f = f_{\alpha,g}$ by the relation (2.3). We call $f = f_{\alpha,g}$ the generating mapping of the type α and the mapping g.

Remark 2. Matrix α represents the type of generating mappings. Specifically we consider some important cases of α . For example, we take

$$\alpha_{(s,s)} = \begin{pmatrix} I_n - E_{ss} & E_{ss} \\ E_{ss} & I_n - E_{ss} \end{pmatrix}, \quad 1 \le s \le n, \tag{2.4}$$

where E_{ss} denotes an $n \times n$ matrix of which only entry at the s-th row and s-th column is 1 and all other entries are 0. In this case, equations (2.2) and (2.3) have much more simple forms. For $\alpha = \alpha_{(1,1)}$, for example, (2.2) turns into

$$\frac{\partial f_1}{\partial w_1} = \left| \frac{\partial (f_2, \dots, f_n)}{\partial (w_2, \dots, w_n)} \right| \neq 0 \tag{2.5}$$

and (2.3) turns into

$$\begin{cases} z_1 = f_1(\hat{z}_1, z_2, \dots, z_n), \\ \hat{z}_2 = f_2(\hat{z}_1, z_2, \dots, z_n), \\ \vdots \\ \hat{z}_n = f_n(\hat{z}_1, z_2, \dots, z_n). \end{cases}$$
(2.6)

For $\alpha_{(s,s)}$, the results are similar.

Remark 3. We note that from (2.5), among the n components of the generating mapping $f(w) = (f_1(w), f_2(w), \dots, f_n(w))^T$ of the type $\alpha_{(1,1)}$, the last n-1 components