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Abstract

In this paper multistep methods for higher order differential systems of the
type Y(7) = £{4, Y} are proposed. Such methods permit the numerical solutions of
initial value problems for such systems, providing error bounds and avoiding the
imcrease of the computational cost derived from the standard approach based on
the consideration of an equivalent extended first order system.

1. Introduction

Higher order differential systems of the form
Y () = f(t,Y (1), a<t<b,
YY) =0, € €79, 0<t<r—1, r>2 (1.1)

are frequent in a variety of models in physics. These systems arise for example modeling
the motion of a system of particles as determined from the laws of classical mechanics
such as the interaction of atoms and molecules!®!%17 the motion of the solar system
and space capsules®?!l and the evolution of star cluster!®. Other situations where
systems of the type (1.1) appear in a natural way may be found in optics!®, quantum
theory of scattering!”!l or celestial mechanics!?. Apart from these problems, systems
of the type (1.1) arise using the method of lines for solving higher order scalar partial
differential systems(20l.

(1.1) can be written as an extended first order problem!*; however, there are ad-
vantages in studying methods for problems of the type (1.1) for several reasons:

(a) the transformation of system (1.1) into an extended first order problem increases

the computational cost:
(b) the physical meaning of the original magnitudes is lost with the transformation
of the system:; |
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(¢) by requiring less generality we may able to produce more efficient algorithms;
(d) useful concepts may be identified, leading to a better understanding of what we
require of a nunerical method for problems in our chosen class.

Systems of the type (1.1) with r = 1 have been treated in [13] for the vector case
and in [15] for the matrix case. The special problem

YOU)=7(t), YOa)=, 0<i<r—1, a<t<bh

g spe——

has been treated in [14] for the scalar case.
In this paper, we consider problems of the type (1.1) where f is a bounded, contin-
uous function f : [a,b] x €P*? — P> satisfying the Lipschitz condition |

17t P) — F(t, Q) < LIP—Qll, P,Qe €P¥. (1.2)

This paper i1s organized as follows. In section 2 some preliminaries about rational matrix
functions are included. In section 3 multistep matrix methods for problems of the type
(1.1)—(1.2) are introduced and concepts of consistency, zero-stability and convergence
are defined. A family of examples is given. Section 4 deals with the study of the
discretization error of thultistep methods, in particular it is proved that consistent and
zero-stable methods are convergent.

If A is a matrix in CP”?, we denote by ||A|| its 2-norm, defined in [10]. If B is a
matrix in €P*9, we denote by o{B) the set of all the eigenvalues of B and its spectral
radiius p(B) is the maximum of the set {|z|; 2z € ¢(B)}. If z € o(B), the index of z
considered as an eigenvalue of B, denoted by Ind(z, B) is the smallest non-negative
integer n such that Ker(B — zI)® = Ker(B — zI)**!, [6]. The number Ind(z, B)
coincides with the dimension of the bigest Jordan block of B in which the eigenvalue
z appears in the Jordan camonical form of B. An efficient algorithm for computing
Ind(z, B) can be found in [1].

In an analogous way to the definition of matrices of class M, given in [9] , we
say that a matrix B € €P*? is of class r if for every eigenvalue z € o(B) such that
|z| = p(B), every Jordan block of B associated with z has size s x s with s < r. Finally,
from formulae 0.121 of [11], if ¢ is a positive integer it follows that

= g+l e I 1 1
S I3[ e 2] s 3] B
k=1 |

where last term contains either n or n? and B,, denotes the m-th Bernouilli number.

2. Preliminaries About Rational Matrix Functions

We begin this section with a result that generéllizes lemmas 5.5 and 6.2 of [12].
Theorem 2.1. Let the polynomial p(z) = apz® + ag_12571 + .-+ + ap has only
zeros on the unit disk |z| < 1 and those with modulus 1 are of multiplicity not exceding



