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Abstract

A class of three-level six-point explicit schemes Lz with two parameters s,p
and accuracy O(th + h?) for a dispersion equation Uy = all,; .. 1s established. The
stability condition |R| < 1.35756176 (s = 3/2, p = 1.184153684) for La is better
than |R} < 1.1851 in [1] and seems to be the best for schemes of the same type.

Any three-level explicit difference scheme for a dispersion equation U; = alzz» can
be written in the form

k | -
Unte =2 biUny; t 2 oeiUni; (*)
j=i J
(#) is referred to as an “N-point” scheme, where N = k—i+ 1 (k > ¢). A class of
six-point schemes L3 containing two paremeters s and p is established in this paper.
Their local truncation errors are O(7h + h?). The optimal stability condition obtained
is {R| < 1.35756176 (R = ar/h3, T = At, h = Az), which corresponds to s = 3/2,
p = 1.184153684. This stability condition is an improvement on the result |R| < 1.1851
in [1] and seems to be the best condition for six-point schemes of the same type at
present. | |

The schenie_s given in this note are as follows:

2
Ls: UM vl + Ut it t A (U;—-j-t-m = U;-j—lfz). (1)
wherea > 0ifd=0,a < 0ifd =1, s =1/2,3/2; Co = 2.5p -3, 1 = —~1.25p + 1,
For s = 1/2 and p = 1, the schemes L3 become H3 in [1]. -
Now we analyse the sta,bility' of sc;hemes Lax by_the"ﬁFnurier'Iﬁéthﬂd. For definiteness,
put s = 3/2,d = Ol(a > 0). Let_'_ - |

- Un = Anem, i = —1, o = mh, ¢-real number, (2)
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Substituting (2) into (1), we obtain the characteristic equation of schemes L3 (see, [3]):

&2 — 2FP(Q)ir—e 9 =0, Q=qh/2, | - (3)
. .
F(Q)=2R Z C;sin(2j + 1)Q + sin(3Q)
=0 |
= Rf(y,p)+ 9(y), y=sin@, 0<Q<7/2 _
fly,p) = 88°(py? — 1) = 883 (y — )y + ©)/c*, p>1,pc =1, (4)
g(y) =3y—4y°, 0<y<L | (5)

From equation (3) and [2,4], it follows that the stability condition of L3 is | Rf (v, p)+
g(y)l < lor _
|R| < ap Og;f{_lG(y,p), (6)

' ~(1+g)/ fy,2), 0<y<eg, o
Gl = -
) {(l—g(y))/f(y,) 02 L. (7)

In order to find inf G(y,p) in the interval 0 < y < 1 for any fixed p > 1, the
properities of G(y, p).ar€ discussed in the following.
1. In the case 0 < y < ¢, we have

8G /8y = 8y*(2y + W (u,)/ f(w:P)*,

W(y,p) = py*(—4y° + 2y + 5) - 3, (8)
W(0,p) = -3, W(e,p)=2(2c+ 1)(1- c) >0,

oW /0y = py(16y + 10)(1 — y) > 0,

3G [dp = 8y°(1 + g(v))/ f(v,p)* > 0. (9)

From the above equalities, we see that there exists a unique zero point z of W(y, p); :
or 8G/8y, and 2 is also a unique minimum point of G(y,p) for 0 < y < ¢ because
G(0,p), G(c,p) — o0, and G(y,p) is obviously a monotonically increasing function of p
for any 'y € (0,c¢) (see, (9)). Thus, for arbitrary numbers 71, P2, €1, ¢z satisfying p; > p2
and plcl = mc% = 1, we have ¢; < ¢2, and

Jnf G(y,p1) = Glam) > Glan,pa) 2 Jnf G(y,p2) = Clens). 0

This verifies that inf G(y, p) (0 < ¥ < c) is a monotenically increasing function of p > 1
2. In the case of ¢ < y < 1, we have

. 8G[8y = 8y*H(y,p)/ f(y,p)",

H(y,p)=pL{y) - 6y+3, 1<p<po, co<y<l,
L(y) = —8y® + 124° — 5y = 49*(2y — )(31 — »)(¥ — 32),
y = (V21 - 1)/4, 1 =-(V21+1)/4,




