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Abstract

It is shown that the error corresponding to certain spline collocation approxi-
mations for nonlinear Volterra integral equations of the second kind is the solution
of a nonlinearly perturbed linear Volterra integral equation. On the basis of this
result it is possible to derive general estimates for the order of convergence of the
spline solution at the underlying mesh points. Extensions of these technmiques to

other types of Volterra equations are indicated.
#

§1. Introduction

Consider the nonlinear Volterra integral equation of the second kind

Y0 =g+ [ Ko ueds, teT=(0,T) (1.1)

where g: I —» Rand k: S x R— R (with §:={(t,8):0<s <1< T}) denote given
continuous functions, which are assumed to be such that (1.1) has a unique solution
y € C(I). Suppose that u: I — Ris an approximation to y satisfying

ly — ulloo == sup{ly(t) — u(t)| : t € I} =o(h") p>0, (1.2)
as h — 0. Here, h = RN} is the diameter of the underlying mesh IIxy : 0 = #p <
t; < - <ty =T (with t, = tLN)_): h:=max{tpy; —tn: 0£ 0 < N —1}. Often u
converges faster to y on the mesh Iy than on I, iL.e. there exists a p* > p so that

max {|y(?) — u(t)| : t € In} = &(hp'). (1.3)

We then say that u exhibits discrete (or local) superconvergence of order P* at the
mesh points. |

This paper is concerned with the following question: assuming that we have es-
tablished a global convergence result of the form (1.2), how can we verify if the ap-
proximation » (obtained, e.g., by collocation in some finite-dimensional function space)
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where

Ok(t,s,y)
0y

A(t,s8) :=

y=y(s).

and
(Be)(t) := 2 | a%gy — - €%(s)ds,

y=w(a)

with w(s) := y(s) + 8(s)e(s) for some § € (—1,0).
Proof. 1t follows from (1.1) and (2.7) that e(?) satisfies

e(t) = (1) + / (k(2, 8, y(s)) — k(t,8,u(s))}ds, te€I

The integrand can be written as

dk(2,s,y)

k(t,s,y(s)) — k(tr 3, y{3) — e(3)) = k(1, s, y(s))_ B by e(s)
1 0%k(t, s, y) |
* 5_ dy? y=w(s) | Ez(ﬂ)‘

where, by Taylor s formula, w(s) := y(s)+8(s)e(s), with —1 < @ < 0. This yields (2.8).
In an a.nalogous way we obtain an expression for e;,(1) : +y(t) — ui(2).
Lemma 2.2. The iterated collocation error e;(t) corresponding to the iterated

collocation solution uy(l) given by (2.3) is related to e(t) by
- t
eill) = f A(t, s)e(s)ds + (Be)(t), tel, (2.9)
0

 with A(t,s) and (Be)(t) as in Lemma 2.1. |
Lemma 2.3. Let R(t,s) be the solution of the resolvent equation

R(t,8) = —A(t,s) + _/t A(t, v)R(v,s)dv, (2,8) €S, (2.10)

where the kernel A(1,s) has been introduced in Lemma 2.1. Then ¢(t) solves the non-
linearly perturbed linear Volterra integral equation (2.8) if, and only if, it satisfies

e(t) = r(t) — _[: R(t,s)r(s)ds + (Be)(?) — /; R(t,s)(Be)(.s)ds, tel. (2.11)

Proof. Setting F(t) := r(t) + (Be)(t) it follows from the classical Volterra theory
(compare also [8,pp. 189-193]) that the solution of

e(t) = F(t) + '[:-A(t,s)e(s')ds, tel,
is given by '
’ Ceft) = F(t) + f R(t,s)F(s)ds, t€l,

where the resolvent kernel R(t, 8) associated with A(t,s) is defined by (2. 10) This
yields (2.11). Obvmuﬁly, the above steps are reversible. .



