AN ANSWER TO THE CONJECTURE OF I. BABUŠKA AND T. JANIK*1) Cheng Xiao-Liang (Hangzhou University, Hangzhou, China) ## Abstract In this paper, we verify the conjecture in the recent paper of I. Babuška and T. Janik^[1]. ## §1. Introduction The p-version of the finite element method is a new method in which one fixes the mesh, possibly consisting of just one element, and increases the degree p of the piecewise polynomials in order to obtain the convergence of the approximate solution to the exact solution. There has been great progress and development on this subject since the first theoretical results were published in $1981^{[2]}$; see [3, 4] for some recent results. Recently, I. Babuška and T. Janik^[1] discussed the p-version of the finite element method for the initial value problem of an ordinary differential equation containing a parameter, which is the first step to study the parabolic equation. The error estimates are uniform with respect to the parameter but they are not optimal. In this paper, the error estimates are obtained for the various parameters, which can verify the conjecture in [1]. Let $I=(-1,1), \bar{I}=[-1,1], X=L_2(I)$ be the usual space furnished with the norm $$||u||_x = \left(\int_I u^2 dx\right)^{1/2}$$ Let $$\overset{\circ}{C} = \{ v \in C^{\infty}(\overline{I}); \ v(1) = 0 \}$$ where $C^{\infty}(I)$ is the usual space of functions with all continuous derivatives on I. For any $\lambda > 0, v \in C$, we define $$\|v\|_{Y_{\lambda}} = \|-\dot{v}/\lambda + \lambda v\|_{x}$$ where we denote $\dot{v} = dv/dt$. Let Y_{λ} be the completion of $\overset{\circ}{C}$ with respect to the norm $\|\cdot\|_{Y_{\lambda}}$. On $X \times Y_{\lambda}$, $u \in X$, $v \in Y_{\lambda}$, we define the bilinear form $$B_{\lambda}(u,v) = \int_{I} u(-\dot{v}/\lambda + \lambda v)dt. \tag{1.1}$$ ^{*} Received April 26, 1990. ¹⁾ Supported by the Science Foundation of Zhejiang Province. Further, let $f \in \mathcal{X}'_{\lambda}$ be a linear function on Y_{λ} . Consider the following problem (P_{λ}) : Find $u_0 \in X$ such that $$B_{\lambda}(u_0,v)=f(v), \quad \forall \ v\in Y_{\lambda}. \tag{1.2}$$ It has a unique solution. Let $q \ge 1$ be an integer, $S_{q-1} = \{u \in X; u \text{ is a polynomial of degree } q-1\},$ $$\overset{\circ}{S}_q = \{v \in Y_{\lambda}; v \text{ is a polynomial of degree } q\}.$$ Define the p-version of the finite element method for the problem (P_{λ}) : Given $f \in Y'_{\lambda}$ and $q \geq 1$ an integer, find $u_q \in S_{q-1}$ such that $$B_{\lambda}(u_q, v) = f(v), \quad \forall \ v \in \overset{\circ}{S}_q.$$ (1.3) **Theorem 1.1**^[1]. There is a unique u_q satisfying (1.3). If $u_0 \in X$ is the exact solution of the problem (P_{λ}) , then $$||u_0-u_q||_x \leq (1+2q^{1/2}) \inf_{w\in S_{q-1}} ||u_0-w||_x.$$ Define $$R_{q,\lambda}(u) = \|u - u_q\|_x / \inf_{w \in S_{q-1}} \|u - w\|_x. \tag{1.4}$$ Let $\varphi(x) < \infty, 1 < x < \infty$, be a nondecreasing function. The set $\nu(\varphi)$ will be called the set of φ -perfect solutions if the set $\nu(\varphi) \subset X$ such that $$\sup_{u\in\nu(\varphi)}\sup_{q,\lambda}R_{q,\lambda}(u)\varphi^{-1}(q)<+\infty. \tag{1.5}$$ An especially important case is $\nu(\varphi)$ for $\varphi = 1$. In this case, the error estimates of the approximate problem (1.3) to (1.2) are optimal. In [1], I. Babuška and T. Janik proposed a conjecture based on numerical experiments. Conjecture A. Let $u_0 = e^{-\lambda^2(t+1)}$. Then $u_0 \in \nu(\varphi)$ with $\varphi(x) = 1$ or $\varphi(x) = \log(x)$. In this paper, we will prove theoretically that $R_{q,\lambda}(u_0) \leq 2.0$ for any λ and any integer $q \geq 1$. That is, $u_0(t) \in \nu(\varphi)$ with $\varphi(x) = 1$. ## §2. The Answer to the Conjecture If u_0 is the exact solution of equation (1.2) and $$u_0(t) = \sum_{k=0}^{\infty} \beta_k \hat{P}_k(t), \quad u_0^{(q-1)}(t) = \sum_{k=0}^{q-1} \beta_k \hat{P}_k(t)$$ (2.1) where $\hat{P}_k(t)$ $(k = 0, 1, 2, \cdots)$ are the normalized Legendre polynomials of degree k, then from (1.2), (1.3), we get $$B_{\lambda}(u_q - u_0^{(q-1)}, v) = B_{\lambda}(u_0 - u_0^{(q-1)}, v), \quad \forall \ v \in \mathring{S}_q. \tag{2.2}$$