THE CONVEXITY OF FAMILIES OF ADJOINT PATCHES FOR A BEZIER TRIANGULAR SURFACE

Feng Yu-yu

(Department of Mathematics, University of Science and Technology of China, Hefei, Anhui, China)

J. Kozak

(Department of Mathematics and Mechanics, E.K. University of Ljubljana, Ljubljana, Yugoslavia)

Abstract

A necessary and sufficient condition for the convexity of adjoint patches for a Bezier triangular surface is presented. Furthermore, it is proved that this condition is equivalent to the fact that the adjoint patches form a decreasing sequence as the corresponding degree decreases. The condition can be easily computationally verified.

§1. Introduction

Consider a given triangle $T\subset R^2$. A Bernstein-Bezier surface over T is usually expressed

$$B^{n} := B^{n}(p) := \sum_{i+j+k=n} f_{i,j,k} J_{i,j,k}^{n}(p)$$
 (1)

where

as

$$J^n_{i,j,k}(p) := \frac{n!}{i! \ j! \ k!} u^i v^j w^k,$$

 $p := (u, v, w) \in T$ is a point given by its barycentric coordinates, and $F := \{f_{i,j,k} \in R \mid i+j+k=n, i,j,k\geq 0\}$ is a set of prescribed real numbers. The de Casteljau algorithm^[1] provides a stable and efficient tool for the evaluation of $B^n(p)$. It is well known that it has also a simple geometric interpretation, i.e. it can be viewed as a sequence of plain interpolations. To be precise, let us follow [2] and define partial shift operators:

$$E_1 g_{i,j,k} := g_{i+1,j,k}, \quad E_2 g_{i,j,k} := g_{i,j+1,k}, \quad E_3 g_{i,j,k} := g_{i,j,k+1}.$$
 (2)

Let the nodes $P_{i,j,k}$ that correspond to $f_{i,j,k}$ be given by

$$P_{i,j,k} := (i/n, j/n, k/n), i+j+k=n.$$

For a given $P \in T$, the de Casteljau algorithm computes the values

$$f_{i,j,k}^{m} := f_{i,j,k}^{m}(p) := (uE_1 + vE_2 + wE_3)^m f_{i,j,k}$$

$$= \sum_{\substack{\alpha+\beta+\gamma=m\\i+i+k=n-m}} f_{i+\alpha,j+\beta,k+\gamma} J_{\alpha,\beta,\gamma}^{m}(p), \qquad (3)$$

that correspond to the nodes

$$P_{i,j,k}^{m} := P_{i,j,k}^{m}(p) := \left(uE_1 + vE_2 + wE_3\right)^{m} P_{i,j,k} = \left(\frac{i + mu}{n}, \frac{j + mv}{n}, \frac{k + mw}{n}\right). \tag{4}$$

^{*} Received April 19, 1988.

In particular, $f_{0,0,0}^n$ is the value of B^n at the point $P_{0,0,0}^n = P$. Let $F^m := \{f_{i,j,k}^m\}$ and consider $P_{i,j,k}^m$. These nodes belong to a smaller triangle with vertices

$$P_{n-m,0,0}^m$$
, $P_{0,n-m,0}^m$, $P_{0,0,n-m}^m$.

We denote it by T^m . Quite obviously, F^m and $\{P^m_{i,j,k}\}$ depend on the point $P \in T$ at which we are evaluating B^n . Nevertheless, we can adjoin to F^m an (n-m)th degree Bezier surface over T_m . In barycentric coordinates with respect to T^m it reads

$$B_p^{n-m} := \sum_{i,j+k=n-m} f_{i,j,k}^m J_{i,j,k}^{n-m}. \tag{5}$$

It is called (n-m)th adjoint patch of B^n (for the given point p). In [4] it is shown that the original surface B^n is an envelope of the family $\{B_p^m\}$. This explains why the study of adjoint patches could be useful. In the next section we shall discuss the convexity of families of adjoint patches and provide a simple necessary and sufficient condition.

§2. Convexity of Adjoint Patches

In [4] the following conclusion was proved: If the inequalities

$$D_1 f_{i,j,k} := (E_1 - E_2)(E_1 - E_3) f_{i,j,k} \ge 0,$$

$$D_2 f_{i,j,k} := (E_2 - E_1)(E_2 - E_3) f_{i,j,k} \ge 0,$$

$$D_3 f_{i,j,k} := (E_3 - E_1)(E_3 - E_2) f_{i,j,k} \ge 0$$
(6)

hold for i+j+k=n-2, then the adjoint patch B_p^{n-m} is convex over T^m , for all $m=1,2,\dots,n$. The condition (6) is only sufficient, not necessary. We proceed with a necessary and sufficient condition that can be easily verified.

Theorem 1. The adjoint patch B_p^{n-m} is convex over $T^m, m = 1, 2, \dots, n$, for any $P \in T$ if and only if the data F satisfy

$$(D_1 + D_2) f_{i,j,k} \ge 0, \quad (D_2 + D_3) f_{i,j,k} \ge 0, \quad (D_1 + D_3) f_{i,j,k} \ge 0, D_1 f_{i,j,k} D_2 f_{i,j,k} + D_1 f_{i,j,k} D_3 f_{i,j,k} + D_2 f_{i,j,k} D_3 f_{i,j,k} \ge 0$$

$$(7)$$

for all i+j+k=n-2.

Proof. The conditions (7) imply the convexity of B^n over $T^{[3]}$. But any B_p^{n-m} is also a Bezier surface corresponding to F^m . Therefore, it is sufficient to prove that (7) hold for any F^m . Assume that F^m satisfies (7) for some fixed $m \ge 0$. We obtain by (3) and (6)

$$D_1 f_{i,j,k}^{m+1} = D_1 (uE_1 + vE_2 + wE_3) f_{i,j,k}^m = uD_1 f_{i+1,j,k}^m + vD_1 f_{i,j+1,k}^m + wD_1 f_{i,j,k+1}^m$$
(8) and similar equalities for $D_2 f_{i,j,k}^{m+1}$, $D_3 f_{i,j,k}^{m+1}$. Thus by assumption on F^m ,

$$(D_1+D_2)f_{i,j,k}^{m+1}=[u(D_1+D_2)f_{i+1,j,k}^m+v(D_1+D_2)f_{i,j+1,k}^m+w(D_1+D_2)f_{i,j,k+1}^m]\geq 0, (9)$$

and

$$(D_1 + D_3) f_{i,j,k}^{m+1} \ge 0, \tag{10}$$

$$\{D_2 + D_3\} f_{i,j,k}^{m+1} \ge 0 \tag{11}$$

for all i + j + k = n - (m + 1) - 2.