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Abatract

In this paper we study the polynomial acceleration methods for solving singular lin-
ear systems. We establish iterative schemes, show their convergence and find iteration

error bounds.

§1. Introduction

For many practical problems, such as Neumann problems and those for elastic bodies with
three surfaces and Poisson’s equation on a sphere and with periodic boundary conditions,
their finite differerice and finite element formulations lead to singular but consistent systems
of linear equations. In addition, when an eigenvalue problem is solved by a relaxation
method, the solution of a singular linear system is involved!®l. However, as pointed in [1],
methods for solving singular systems of linear equations have unfortunately been somewhat
neglected in literature. Perhaps this is due to some of the difficulties involved in establishing
criteria for convergence. |

In this paper we study polynomial acceleration methods for solving singular linear sys-
tems. We establish iterative schemes, show their convergence and find iteration error bounds.

For convenience, we discuss real systems. All results obtained in this paper can be easily
generalized to complex systems.

We use the following notations: E™ is an n-dimensional real vector space, E®*" stands
for a set of all n X n real matrices, N{A) and R(A) represent null space and column space
(range of value) of matrix A, respectively, o{ A) stands for the set of all eigenvalues of matrix
A and AT and A* are the transpose and the Moore-Penrose inverse of matrix A, respectively.

82. Basic Iterative Methods

Consider a linear system
Az =}, (2.1)

where A € E"*", z € E™ and b € R(A). We construct a (linear stationary) basic iterative
method
2/t =Tz¥ + g, (2.2)
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where the iterative matrix T € Em*™ g € E* 2¥,2¥"! € E™. (2.2) can be written as
follows:

¥t = z¥ — H(Az" — b), (2.3)
where H € E™**"™, From (2.2) and (2.3) we have
T=1—-HA, g=H: (2.4)

Let z*{z°) denote a solution of {2.1) which is a limit of a vector sequence prnduced by an
iterative method (not necessarily a linear stationary iterative method} with z° as an initial
iterative vector. Then we define the set of error vectors U!8l:

U={y:y=2z-2"(z), ze€lUy}, (2.5)
where U 18 a set of the initial iterative vectors. When U is a subspace of E™, we use | - ||¢
to denote a vector norm in U and the induced matrix norm. Then we use Roo(T),

- ——
R (F) = — lim L1 7)), (2.0

to denote the asymptotic rate of convergence of an iterative method for solving singular
systems, where T(¥) gtands for the error transition operator of the v-th iteration!®l.
If we cnsider the linear stationary iterative method (2.2)—(2.4) and introduce the sub-

spectral radius of the iterative matrix T

HT) = max{]A] : A € o(T) U{ON{1}), (2.7)

then we have the following result:

Theorem 2.1!%. The linear stationary iterative method (2.2)—(2.4) is convergent in
Ug = E™ 3f and only if

(i) +(T) <1,

(ii) rank (I — T) = rank (I - T)%,

(iii) N (A4) = N{H A} or, equivalently, N{H) N R{A) = {0}.
When the linear stationary sterative method s convergent, U (cf. (2.5)) must be a subspace:
U= R(HA), and the asymptotic rate of convergence 1s

Roo(T) = — In~(T). (2.8)

Note that the basic iterative method (2.2)-(2.4) can be derived from the splitting of

matrix A:
A=HY-H'T. (2.9)

Definition 2.1. The sterative method (2.2) 12 symmetrizable 1f for some nonsingular
matriz W the matriz W{I — T)W ™1 s symmeiric posstive semidefinite (SPSD). Such a
matriz W is called a symmetrization matniz.

Obviously, if the iterative method {2.2) is symmetrizable, then the eigenvalues of T are
real and matrix T is diagonalizable. Hence the condition (ii) of Theorem 2.1 is satisfied. Let

m{T) =min{A: A€o(T)}, M(T)=max{Ar: Aeco(T)};

then we have

M(T) < 1. (2.10)



