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Abetract

This paper presents a method of finding a strictly feasible solution for linear con- -
straints. We prove, under certain assumptions, that the method is convergent in a
finite number of iterations, and give the sufficient and necessary conditions for the in-
feasibllity of the problem. Actually, it can be considered as a constructive proof for the
Farkas lemma.

§1. Introduction

In this paper we consider the following problem: to find a vector 2(%) > 0 which satisfies

the linear constraints ,
» Ax = b, b A 2 0 (1.1)

where A is an m X n real matrix with rank m, b is a real vector in R™, and z is a real
variable in B”. A vector (%) is called a strictly feasible solution if it satisfies (1.1) and all
its componentz are positive.

~ This problem arises in solving the standard form of linear programming using an interior
point method [7], {8], and minimizsing the problem of a nonlinear objective function with lin-
~ ear constraints by means of barrier and penalty functions. Especially, a new polynomial-time
algorithm for linear programming [4] was presented in recent years, It is a great improvement
on complexity, and furthermore, is said to be 50 times faster than the simplex method for
practical problem, Unfortunately, no further information on the test problems or experimen-
tal procedures was given. Therefore, it has arosed extensive attention and discussion. The
idea of the new algorithm originated from the techniques of solving nonlinear programming
problems. Obviously, the essential difference between the new algorithm and the simplex
method is that it finds the optimal solution from the interior feasible direction of the con-
strained region. On the other hand, a similar result can also be deduced from a projected
Newton barrier function [2] and the penalty function method [3]. As is well known, these
methods all require a strictly feasible starting point for minimisation, and generate a se-
quence of strictly feasible solution. So, how to find an initial strictly feasible solution for
problem (1.1} in practice is an important problem.

This paper presents an efficient method of finding a strictly feasible solution for problem
(1.1). In fact, the method can be introduced directly from the interior point method, and it
leads to computational simplicity. In Section 2 we describe the algorithm, and show how to
start it, when to stop it, and how to easily identify infeasibility. In Section 3, under certain
assumptions, we prove its convergence to a strictly feasible solution in a finite number of
iterations, and the sufficient and necessary conditions for the infeasibility.
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§2. Feasibility and Algorithm

In this section, the necessary and sufficient conditions of the feasibility for problem (1.1)
are briefly discussed, and the sufficient conditions of the existence of a strictly feasible
solution are given, we give an algorithm for finding a strictly feasible solution in a finite
- number of iterations or indicating infeasible conditions for problem (1.1) in the case of
nondegeneration, because the degeneration case is too complicated to be discussed here.

Concerning the feasibility, actually Farkas’s theorem has shown the necessary and suffi-
- cient condition of feasibility for problem (1.1). .

Lemma 2.1 (Farkas Theorem). Suppose that A € R™%" b€ R™. Then problem (1.1)
15 feassble if and only if for all the nonzero vectors y € R™ which satisfy ATy > 0, the
Jollounng tnequality holds:

5Ty > 0.

Obviously, the existence of the strictly feasible solution is not garanteed when problem
(1.1) is feasible, Therefore, it is necessary to have a strong condition in order to ensure the
existence of a strictly feasible solution.

Theorem 2.2 Suppose that rank(A) = m, and that problem (1.1) ts feasidble and nonde-
genrate. Then there 13 a sirictly feasible solution. '

A constructive proof of the theorem is given in Section 3.

Now we descrfbe our algorithm. Assume that z(%) > 0 is a given vector.

Algorithm A:
Let k = 0, and let an initial starting point z(%), be given
(1) Define

Dy = diag(zik], z{;}, o, 2l (2.1)
Ak — .A.Dk (2‘2]

and compute the residual vector
r*) = p— Az(®), | (2.3)
(2) Compute vector
p'¥) = AT (4, AT)¢(®), (2.4)
If p{*) < 0, and bT (Ax AT )~ 1rl%) > 0, stop; then problem (1.1) is infeasible. Otherwise, go

to the next step.
(3) Chooee the minimum component of p!*), and let

P = min{p™). (2.5)

If —1 < B, then
2:+1) = z(¥) 4 D, p(8), ' (2.6)

'fhuu, z(*) is a strictly feasible solution for problem (1.1}, stop. Otherwise, go to next step.



