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Abstract

We present a non-conforming domain decomposition technique for solving elliptic
problems with the finite element method. Functions in the finite element space asso-
ciated with this method may be discontinuous on the boundary of subdomains. The
sizes of the finite meshes, the kinds of elements and the kinds of interpolation func-
tions may be different in different subdomains. So, this method i= more convenient and
more efficient than the conforming domain decomposition method. We prove that the
solution obtained by this method has the same convergence rate as by the conforming
method, and both the condition number and the order of the capacitance matrix are
much lower than those in the conforming case.

§1. Introduction

Along with the development of the parallel computer in recent years, there has been a
growing interest in methods based on domain decomposition for the numerical solution of
elliptic partial differential equations. The key idea of this method is that the domain of
the problem is decomposed into smaller subdomains, and then a computer is used to solve
the problem on each subdomain. This is an efficient method for solving the big problem of
elliptic partial differential equations on the parallel computer.

Up to now, there are only conforming finite elements with domain decomposition meth-
ods, with which the function of the finite element space must be compatible on the whole
domain of the problem. However, it will be more convenient and more efficient to adopt
different sizes of meshes and different kinds of shape functions in different subdomains when
solving practical problems in science and engineering. But this is impossible for conforming
finite elements.

The aim of this paper ig to put forward a non-conforming domain decomposition for
elliptic problems. This method needs no compatibility on the boundary of subdomains, that
is to say, the function of the finite element space may be discontinuous on the boundary
of subdomains. With this property we can use different sizes of meshes, different kinds of
elements in different subdomains. We will prove that the convergence rate of the solution
obtained by this method is the same as by the conforming method; moreover, the condition
number and the order of the capacitance matrix are much lower than in the conforming
case. In this paper, we only consider the method itaelf as well as the error and the condition
number estimates. Solution by this method of the algebraic system of equations, which
arises from the discretization of elliptic equations, will be discussed in another paper.

In Section2, we will introduce the decomposition of the domain and the construction
of the finite element space. Section 3 contains the non-conforming method and the matrix
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representation. The error estimate of the energy norm will be obtained in Section 4. Finally,
in Section 5 the condition number of the capacitance matrix will be given.

§2. The Decomposition of the Domain and Finite Element Space

For simplicity, we only consider the Dirichlet problem for the Poisson equation

—Au=f 1l
(2.1)
u=0 on ofl

We suppose that the domain {1 is a polygon.

We first decompose the domain {2 into subdomains {;; then we subdivide the subdomain
{1; and its boundary into finite elements.

More precisely, we shall begin with the following assumption with regard to {l.

Al: {1 is a polygonal domain.

A2: For each d,d > 0, as a parameter, the domain {1 is decomposed into quasi-uniform
subdomains {3;(¢ = 1,2,---,n) with size d. By this we mean that there exisis a positive
constant ¢ independent of d such that each subdomain {}; contains a ball of diameter.cd and
is contained in ball of diameter d.

A3: For each parameter h, 0 < h < d, the subdomain {); is subdivided into quasi-uniform
finite elements with size k. The meaning of this assumption is as above. -

Let 2% be the union set of all elements in (;, and (" = U 1,

A4: Let T’ be the union set of all boundaries of the subdcr;‘la.ins, that is ' = U3f};. For

each H,0 < h < H < d,T is subdivided into quasi-uniform line segments with size H. Its
meaning is similar to A2. The vertices of {}; must be the vertices of elements. Let ' be
the union set of all line segments in I'.

We always suppose that 0 < h < H < d and assume the asymptotic behavior

_h _
lim 7 =0 2

where A = max(h;).
$

Completing the decomposition of the domain, we now construct the space of the finite
elements. We make the following supposition:

Let S, (12;) be the space of piecewise m-th polynomial functions which are continuously
defined in subdomain ﬂ:“ and vanish on 91 N d{l;.

Let S2(2) be the space of functions defined in Q% = l,lﬂ:“, which are continuous and
1

piecewise m-th polynomials in ﬂf“' and vanish on 3{1. We emphasize that the functions
SP (1) are only continuous in {}; but may be discontinuous on {1.

Let Sz (') be the space of piecewise n-th polynomial functions continuously defined on
2 and vanishing on 81. Sy (81);) is the space of piecewise n-th polynomial functions
continuously defined on I'¥ M 81); and vanishing on 31} N 91);.

We define the finite element space Sy y as follows:

Shxr C 820 x Sg(T), (v, ) € Shxy is and only if (v, ) € §)(Q) x Sy(T) and u= ¢
on the nodes emerging during subdividing the subdomain {1; into elements.

Space Spx g is a subspace of Sy (1) X Sp(T'). It can be easily seen that S, (') = (el(u, p) €
Shx H ] | |



