PERTURBATION BOUNDS FOR THE POLAR FACTORS*1)

Chen Chun-hui
(Department of Mathematics, Peking University, Beijing, China)
Sun Ji-guang
(Computing Center, Academia Sinica, Beijing, China)

Abstract

Let $A, \tilde{A} \in \mathbb{C}^{m \times n}$, rank $(A) = \operatorname{rank}(\tilde{A}) = n$. Suppose that A = QH and $\tilde{A} = \tilde{Q}\tilde{H}$ are the polar decompositions of A and \tilde{A} , respectively. It is proved that

$$\|\tilde{Q} - Q\|_F \le 2\|A^{\dagger}\|_2\|\tilde{A} - A\|_F$$

and

$$\|\tilde{H}-H\|_F \leq \sqrt{2} \|\tilde{A}-A\|_F$$

hold, where A^{\dagger} is the Moore-Penrose inverse of A, and $\|\cdot\|_2$ and $\|\cdot\|_F$ denote the spectral norm and the Frobenius norm, respectively.

§1. Introduction

In this paper, we use the following notation. The symbol $C^{m \times n}$ denotes the set of complex $m \times n$ matrices, and $R^{m \times n}$ the set of real $m \times n$ matrices. A^T and A^H stand for the transpose and the conjugate transpose of A, respectively. A^1 is the Moore-Penrose inverse of A. $I^{(n)}$ is the identity matrix of order n. $\| \cdot \|_2$ denotes the spectral norm and $\| \cdot \|_F$ the Frobenius norm.

The polar decomposition has found many important applications in factor analysis, aerospace computations and optimization. The following polar decomposition theorem is well known.

Theorem 1.1. Let $A \in \mathbb{C}^{m \times n}$, $m \geq n$. Then there exists a matrix $Q \in \mathbb{C}^{m \times n}$ and a unique Hermitian positive semi-definite matrix $H \in \mathbb{C}^{n \times n}$ such that

$$A = QH, Q^HQ = I^{(n)}.$$
 (1.1)

If rank(A) = n, then H is positive definite and Q is uniquely determined. Let $A \in \mathbb{C}^{m \times n}$, $m \ge n$, have the singular value decomposition

$$A = U\binom{\Sigma}{0}V^H$$

where $U = (U_1, U_2) \in \mathbb{C}^{m \times m}, V \in \mathbb{C}^{n \times n}$ are unitary, and $\Sigma = \text{diag}(\sigma_1, \sigma_2, \dots, \sigma_n), \sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_n$. Then A = QH is the polar decomposition of A, where

$$Q = U_1 V^H, \quad H = V \Sigma V^H. \tag{1.2}$$

^{*}Received May 13, 1987.

¹⁾ A project supported by National Natural Science Foundation of China.

In the practical computation, because of the restriction of finite decision, the computed polar factors are those of a matrix \tilde{A} perturbed from A. So it is of interest both for theoretical and for practical purposes to determine the perturbation bounds for the polar factors of a matrix. Higham [1] and Mao [2] have studied that question, and the following results were given.

Theorem 1.2^[1]. Let $A \in \mathbb{C}^{n \times n}$ be nonsingular, with the polar decomposition A =QH. If $\varepsilon = \frac{\|\Delta A\|_F}{\|A\|_F}$ satisfies $\kappa_F(A)\varepsilon < 1$, then $A + \Delta A$ has the polar decomposition

$$A + \Delta A = (Q + \Delta Q)(H + \Delta H),$$

where

$$\frac{\|\Delta H\|_F}{\|H\|_F} \leq \sqrt{2}\varepsilon + O(\varepsilon^2),\tag{1.3}$$

$$\frac{\|\Delta Q\|_F}{\|Q\|_F} \leq (1+\sqrt{2})\kappa_F(A)\varepsilon + O(\varepsilon^2),\tag{1.4}$$

$$\kappa_F(A) = \|A\|_F \|A^{\dagger}\|_F.$$

Theorem 1.3.[2]. Let $A \in \mathbb{R}^{n \times n}$ be nonsingular, which has singular value decomposition $A = U\Sigma V^T$, where A is perturbed to A, which has singular value decomposition $\tilde{A} = \tilde{U} \tilde{\Sigma} \tilde{V}^T$. Then

$$\|\tilde{U}\tilde{V}^T - UV^T\|_F \le 2\|A^{\dagger}\|_2\|\tilde{A} - A\|_F.$$
 (1.5)

This paper will further study the perturbation bounds for polar factors.

§2. Main Results

First, we introduce the following lemmas:

Lemma 2.1. Let $B \in \mathbb{C}^{m \times m}$, $C \in \mathbb{C}^{n \times n}$, $m \ge n$, be normal matrices, and

$$\Gamma = \left(egin{array}{ccc} \gamma_1 & \gamma_2 & & & \\ & \gamma_n & & \ddots & \\ & & 0 & \gamma_n \end{array}
ight) \in C^{m imes n}, \gamma_1 \geq \gamma_2 \geq \cdots \geq \gamma_n \geq 0.$$

Then

$$||B\Gamma - \Gamma C||_F \ge \gamma_n \left\| B \binom{I^{(n)}}{0} - \binom{I^{(n)}}{0} C \right\|_F. \tag{2.1}$$

Proof. Let

$$\hat{\Gamma} = \begin{pmatrix} \gamma_1 & & & & O \\ & \gamma_2 & & & & O \\ & O & \ddots & & & & \\ & & O & & \gamma_n & & & & \\ & & & & & & & \\ \end{pmatrix}, \quad \hat{C} = \begin{pmatrix} C & 0 \\ 0 & N \end{pmatrix},$$

where $N \in \mathbb{C}^{(m-n)\times (m-n)}$ is any normal matrix. Then we have

$$||B\hat{\Gamma} - \hat{\Gamma}\hat{C}||_{F}^{2} = ||B(\Gamma, \binom{0}{\gamma_{n}I^{(m-n)}}) - (\Gamma, \binom{0}{\gamma_{n}I^{(m-n)}}) \binom{C}{0} \binom{0}{N}||_{F}^{2}$$

$$= ||(B\Gamma - \Gamma C, B\binom{0}{\gamma_{n}I^{(m-n)}} - \binom{0}{\gamma_{n}I^{(m-n)}})^{N})||_{F}^{2}$$

$$= ||B\Gamma - \Gamma C||_{F}^{2} + \gamma_{n}^{2} ||B\binom{0}{I^{(m-n)}} - \binom{0}{N}||_{F}^{2}$$
(2.2)