AN ACCELERATION METHOD IN THE HOMOTOPY NEWTON'S CONTINUATION FOR NONLINEAR SINGULAR PROBLEMS*

YANG ZHONG-HUA (杨忠华)

(Shanghai University of Science and Technology, Shanghai, China)

Abstract

The nonlinear singular problem f(u) = 0 is considered. Here f is a C^3 mapping from E^n to E^n . The Jacobian matrix f'(u) is singular at the solution u^* of f(u) = 0. A new acceleration method in the homotopy Newton's continuation is proposed. The quadratic convergence of the new algorithm is proved. A numerical example is given.

§ 1. Introduction

We consider the nonlinear singular problem

$$f(u) = 0. (1.1)$$

Here f is a C^3 mapping from E^* to E^* and u^* is a singular solution of (1.1), i.e. $f(u^*) = 0$ and the Jacobian matrix $f'(u^*)$ is singular

Newton's method and its acceleration in the neighborhood of a singular solution have been studied by many authors (see [2]—[9], [11], [13]—[15] for details), under the requirement that the initial guess not only is near u^* but also belongs to a special cone

$$W(\rho, \theta) = \{u \mid 0 < \|u - u^*\| < \rho, \|P_{x}(u - u^*)\| \le \theta \|P_{N}(u - u^*)\| \}$$

for small ρ , θ , where N is the null space of $f'(u^*)$, X is the complement of N in E, P_N is the projection onto N and P_* is the projection onto X.

We assume the dimension of N is one, i.e. rank $f'(u^*) = n-1$. This is the case we usually meet. Denote

$$N - \{\alpha \phi \mid \alpha \in R\}, \quad \phi \in E^*, \ \phi \neq 0,$$

$$M - \text{Range}(f'(u^*)) = \{y \in E^* \mid \psi y = 0\}, \quad \psi \in E^*, \ \psi \neq 0.$$

We introduce a homotopy continuation mapping $G(u, \lambda) = f(u) - \lambda f(u^0)$ from E^{n+1} to E^n . A point $(u, \lambda) \in E^{n+1}$ is called a regular point for G if $DG: E^{n+1} \to E^n$ is surjective. A point $v \in E^n$ is a regular value of G if each point of $G^{-1}(v)$ is a regular point for G.

Our idea is to transform the singularity in the original problem into the singularity in a scalar equation which is simply treated by an acceleration method. Compared with the other algorithms ours does not require that the initial guess must lie in a special cone $W(\rho, \theta)$ for small ρ , θ . Also, some combination of our

^{*} Received January 22, 1985.

algorithm with the other algorithms is possible. The initial guess for other algorithms can be obtained by our method.

§ 2. Pseudo-Arclength Continuation

We construct a homotopy

$$G(u,\lambda) = f(u) - \lambda f(u^0), \qquad (2.1)$$

where u^0 is chosen in such a way that 0 is a regular value of $G(u, \lambda)$. According to Lemma 2.15 in [10], we can choose such u^0 with probability one.

Our purpose is to find a path $u(\lambda)$ from $\lambda-1$ to $\lambda-0$. Obviously $u(1)=u^0$, and u(0) is just a solution of f(u)=0 that we want to solve. An auxiliary equation introduced in the pseudo-arclength continuation method is

$$N(u,\lambda;\sigma) = \dot{u}_*^T(u-u_*) + \dot{\lambda}_*(\lambda-\lambda_*) - (\sigma-\sigma_*), \qquad (2.2)$$

where (u_*, λ_*) is a point on the homotopy path at $\sigma = \sigma_*$, $u_* = du(\sigma_*)/d\sigma_*$, $\lambda_* = d\lambda(\sigma_*)/d\sigma_*$, u_*^T is the transpose of u_* .

§ 3. Computing the Root σ^* of $\lambda(\sigma) = 0$

In order to get the solution of f(u) = 0 we are concerned only with the root σ^* of $\lambda(\sigma) = 0$ and the corresponding computation for $u(\sigma^*)$, rather than the whole homotopy path $\Gamma(\sigma)$: $[\lambda(\sigma), u(\sigma)]$.

Keller [9] proposed the secant iteration

$$\sigma_{j+1} = \sigma_j - \frac{\sigma_j - \sigma_{j-1}}{\lambda(\sigma_j) - \lambda(\sigma_{j-1})} \cdot \lambda(\sigma_j)$$
(3.1)

after σ_0 and σ_1 , which satisfy $\lambda(\sigma_0) \cdot \lambda(\sigma_1) < 0$, are computed. Of course we can use Newton's iteration for $\lambda(\sigma) = 0$,

$$\sigma_{j+1} = \sigma_j - \lambda(\sigma_j) / \dot{\lambda}(\sigma_j). \tag{3.2}$$

The practical computations show that both methods converge slowly in our singular case because of

Theorem 1. Along with the homotopy path $\Gamma(\sigma)$: $[u(\sigma), \lambda(\sigma)], \lambda(\sigma^*) = 0$ if $\lambda(\sigma^*) = 0$.

Proof. wo was chosen in Section 1 such that

$$DG(u, \lambda) = (f'(u), f(u^0))$$
 (3.3)

is a surjective mapping from E^{n+1} to E^n . So

$$\operatorname{Rank}(f'(u), f(u^0)) = n \quad \forall (u, \lambda) \in \Gamma. \tag{3.4}$$

Noticing

we have

Rank
$$f'(u^{\bullet}) = n-1$$
 at $\sigma = \sigma^{\bullet}$

$$f(u^0) \in \text{Range } f'(u^*).$$

Otherwise $f(u^0)$ is a linear combination of each column of the matrix $f'(u^*)$, and therefore

Rank
$$(f'(u^*), f(u^0)) = \text{Rank} f'(u^*) - n - 1$$

That contradicts (3.4).