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Abstract

The finite difference migration, proposed and developed by J. F. Clasrbout™], is now widely used
in seismic data processing. The method has a limitation that the events are not dipping too much.
Guanguan ZHANG derived a new version of higher—order approximation of one-way wave equation

in the form of systems of lower—order equations(®l, For these systems he constructed some suitable
difference schemes and developed a new algorithm of finite-difference migration for steep dipst3. In
this paper, we discuss the stability of thess difference schemes by the method of energy estimation.

,  §1. Equations and Difference Schemes

For steep dip migration the following system of lower—order equations can be
used™
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The initial and boundary conditions are
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It can be eagily verified™ that

ﬁlﬂ:l}ﬂy gﬁmdél/2- | (1.10)

From (1.1a), (1.1b) and (1.1c) one obtaing

1 @2? 1 8% w2, 3ﬂql-
& Do 2 00 &A™ G

0, (1.1d)

* Received May 21, 1985.



as, JOURNAL OF COMFUTATIONAL MATEHEMATICS Vol. 6

Obviounsly, problems (1.1d), (1.1b) and (1.7a), (1.1b) are equivalent. For
m=2, (1.1a), (1.1b) can be simplified fo
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The approximations of p(kdz, §d¢, ndz), ¢(kdz, (§—1/2)4t, (n+1/2) 42) ,q(kdxz,
idt, (n+1/2) 42y, qi{kds, (§—1/2)4t, (n+1/2)42) are denoted respectively by
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4t 4; . 4;, 4; are similarly defined. If we let 4 dencte 4%, we have the identities
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(g +2uyq) duy=A(u3). (1.4)
We can approximate (1.2) by the difterence scheme
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with the initial and boundary conditions |
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: Pra=ges =0, j=0.
The interval [~ X, X] is divided inio 2K equal parts, dr=X /E'
We can also use the following scheme

4F 87 (A +ad®) 13,3/ dt Mz — v dy 45 ( pi, J+P Vil o AT

T ] 4p) /e~ 2rid legiiHin a” =0, (1.68)
A g e/ Bt = A5 0%,/ B2, (1.6b)

with the initial and boundary conditions
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(1.1) can also be approximated by the difference scheme
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with the initial and boundary conditions



