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FIXED POINT METHODS FOR THE
COMPLEMENTARITY PROBLEM*®
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Abstract

This paper is concerned with iterative procedures for the monotone complementarity problem.
Our iterative methods consist of finding fixed points of appropriate continuous maps. In the case of the
linear complementarity problem, it is shown that the problem is solvable if and only if the sequence of
iterates i bounded in which case summability methods are used to find a solution of the problem. This
procedure is then used to find a solution of the nonlinear complementarity problem satisfying certain
regularity conditions for which the problem has a nonempty bounded solution set.

§ 1. Introduction

We are concerned in this paper with the complementarity problem, viz., that
of finding a #%>0 such that F#(z,)>0 and such that 2iF(z,) =0. Here F is an
operator from H* to h". In particular, we are concerned with the case when # is
monotone, that is

(o—9)"(F (@) —F(g))>0, Va, ycHe.

The operator ¥ is strongly monotone if there exists a positive real number A such
that : |

(2—y)"(F(z) —F(y))=r|a—yl>

When F' ig an affine map, F(z)=Mx-+¢q, we shall refer to the complementarity
problem as the linear complementarity problem and write LCP (M, ¢) in this case.
Otherwise we shall refer to it as the nonlinear complementarity problem and write
NLCP(F). Olearly when ¥ is affine and monotone, M is positive semidefinite.

In the case of LOP(M, ¢), when M is positive semidefinite, if the problem is
feasible, that is there exists #>>0 such that Mz-+¢>0, the problem is solvable
[ Eaves, 1971]. This ig not the case for NLOP (F) ([Megiddo, 1977], [Garcia, 1977]).
However, for &>0, if we consider the Tihonov regularization #,:=F¥#4 I, then
the corresponding problem NILCP(Z.) hag a unique solution since F, is strongly
monotone [ Karamardian, 1972]. When &—0, », converges to the least {wonorm
solution of NLCP (F'}, provided it is solvable [Brézis, 1973].

A solution of NLOP(F) is also a fixed point of the map
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o> (z—F()) ,: =max{0, s—F(z)}.

The principal aim of this paper is to consider iterative procedures to find such fixed
points. We shall show that in the linear case the sequence of iterates is bounded if
and only if LOP(M, ¢) is solvable. When this is the case, we use summability
methods o obtain a solution of the problem. Although feasibility of the monoione
NLOP(F) does not imply its selvability, it is a theorem of Mangasarian and
McLinden [1985] that when a regularity condition such as the distribute Slater
constraint qualification is satisfied, then, in this case, the solufion seb is bounded.
We show how ihe iterative procedure for the linear case may be adapted fo find a
solution in this special case. |

We briefly describe the notation used in this paper. We use :i" for the space of
real ordered n-tuples. All vectors are column vectors and we use the Huclidean
norm throughout. Given a veotor z, we denote its ¢** componeni by «;. We say z=>0
if z;>>0V4. The nonnegative orthant is denoted by 3.

We use superseripts to distinguish between vectors, e.g. %, 2 efo. For s,
yE R, 27 indicates the iranspose of @, 2"y their inner product. Ococasionally, the
supersoript T' will be suppressed. All matrices are indicatéd by upper case letters A.
B, O, ete. The ¢** row of 4 is denoted by A; while its 7 column is denoted by A,.
The transpose of A is denoted by AT.

Given NLCP(F), we define the feasible set and solution set by S(F) and S(F)
respectively, that is,

8 (F) = {s€R3: F(a) €N},

S(F) = {z €8 (F): o"F(a) =0}.

In the case of LCP(M, ¢), we shall denotle these sels by S(M, ¢) and S(M, ¢)
respectively, Finally the end of a proof is signified by [

§ 2. Fixed Point Methods

We begin w:th the well known notion of & contraction mapping.
2.1. Definition. Let P: DTR A We say P is Lipschilzian with modulus
L>0if .

[|P(z) —Ply) |<Liz—y|, V=, y€D. (2.1)

When L<1 (L<1) we say P is non—ezpansive (condractive).

The following theorem is olassical; see e.g., [Ortega and Rheinboldt, 1970,
page 120].

2.2. Theorem, (Banach’s coniraction mapp—irﬂg principle) . Let P: DTR"—H",
D, a closed subset of D such that PDo={P(z): aC Dot Sly. If P 4s a coniraciion
maepping on Do with modulus L, then P has a unique fized point x in D,. Further,
for any point a° in Dy, the seque {2*}, where o= P(2*), converges to = with the
following linear yate:

£U]H-1 o

H _m“ <L """ ‘ (2.2)



