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Abstract

The parallel arithmetic complexities for computing generalized inverse A%, computing the
minimum-norm least-squares solution of Ag==d, computing order m~+n—r deierminants and finding
the characteristic polynomials of order m--n—# matrices are shown to have the same grawth rate.
Alporithms are given that compute 4+ and Ay in O(logr-loga+logm) and O(login+logm) stepa
using a number of pI‘DEE!:EDI'EI which is & ploynomial in m, z and r (4 & BP"", re=rank A4). :

§ 1. Introduction

Let I(n), E(n), D(n), P(n) denote the parallel arithmetioc complexities of
inverting order n matrices, solving a system of n linear equations in m unknowns,
computing order n determinants and finding the characteristic polynomials of order
n matrices regpectively. Then Cganky gave an important theoretical result [1]: |

Theorem 1. I{n)=0(f(n)) < E(rn.) O(f(n)) @ D(n) =0(f(n)) & P(rn.) =
O(f(n)).

He also gives algorithms that compute these problems in O(log?n) steps using a
number of processors whioh ig polynomml in n (n ig the order of the matrix of the
problem ). -

Let A& B}, r-—r:a.nk A, In 13]:113 paper, we give two parallel a,lgﬂnthms for
computing A* and Ay respectively. The one for A" is based on Decell’s method in
[2], and the one for Ay is a generalization of Decell’s method in [3].

The parallel arithmetic complexities for computing the generalized inverse A%
computing the minimum-norm least—squares solution of Ax=>5, computing order
m—+n—r determinants and finding the characteristio polynomials of order m~+n—7
matrices are shown 10 have the same growth rate.

§ 2. The Parallel Algorithm for Computing A+

Let A€ R**, Then there is a unigue matrix X € B> satisfying
| AXA=A, XAX =X, (AX)T=AX, (XA)"=XA.
This X is ealled the M—P inverse of A and is denoted by X =4%,
In [2], Decell gave a finite algorithm for computing A¥. We rewrite it ag
follows:
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Algorithm 1. (1) Parallelly compute B =A%4.
(2) Parallelly mmpu‘se BY e (30, k=1, 2,

(3) Leti Ay, Ag, *-», A, denote the roots of the ﬁharaoteristio polynomial f(A) of
B. Let B ‘

=M, k=1, 2, -, 1

=1

Parallelly compute
C s=(BY =3P, k-1, 2,

=1

(4) Lﬂt the ocharacteristic polynomial f (?u) of B be
FA) =det(Al —B) =A*+c A4 4o,
From the Newton formula | |
Si,+ C18y_1+ CaSy_a*+* -+ Cy_181 +_.‘ka_ =0, k<n

wo have
r - e} 51
51 2 GE sﬂ
Sa s1 3 =—]
_Sr—1 Sp_a 't 81 P[] 6 S

Pa.rallelly compute the solution of the above triangular system.
(b) Pa.ra.llelly compute

AT = —( (ATA)"‘H_-IG (ATA) 24 —i—c,--_iI)!AT/c,. | (2.1)

Theorem 2. Let AC R and GI(m, n) dencie the pmrdﬁ&l m@mm&tw
complexity for computing the M—P inverse A*. Then

GI(m, n)=logr(logn--T/2)+ (1/2)log? q'+210g¢a+10g m+4—0(f(m 7, a’))
and the number of processors used in the algorithm is

nr/2, m<nr/2
@E{mﬂ, m=nr/2,
Pmof - (1) Paraliel enmputamon of B=ATA takes Ti——log m-+1 gteps and
Py =mn® Prooessors.
(2) Parallel computation of B* (k=1 2, --- r) takéd Ta=log r(logn+1) steps
and ¢pa=nr/2 procegsors. ’ |
(3) Parallel eomputatlon of s, (k-=1 2, e er) takes T's=logn steps and cp; =
/2 Prooessors. _
(4) Parallel computation of ¢x(&=1, 2, «-+, ) takes Ty=(1/2)log*r+(3/2)log r
steps and op, =0(r®) prooessors, ﬂ "
(6) Since B? .., B'* are already available, parallel computation of A% takes
Ts=log r+1log n+3 steps and ep; —n?m processors.
Thus

P =IMmax ep, =
1<

{-n,%/z', m<<nr/2,
mn?, me=nr/2.



