A RECURSIVE ALGORITHM FOR COMPUTING THE WEIGHTED MOORE-PENROSE INVERSE AMN*

WANG GUO-RONG (王国荣)

CHEN YONG-LIN (陈永林)

(Shanghai Normal University, Shanghai, China)

(Nanjing Normal University, Nanjing, China)

Abstract

In this paper, we give a recursive algorithm for computing the weighted Moore-Penrose inverse A_{MN}^{*} . This method is a generalization of Greville's method for computing Moore-Penrose inverse A^{+} , and the technique of its proof is new. This method suits the weighted least-squares problem.

§ 1. Introduction

Throughout this paper, let M and N be positive definite matrices of order m and n respectively. Let $A \in C^{m \times n}$. Then there is a unique matrix $X \in C^{n \times m}$ satisfying

Let
$$A \in U$$
 Then therefore $X = X$ $X = X$ $Y = X = X$ $X = X$

This X is called the weighted M-P inverse of A, and is denoted by $X=A_{MN}^{+}$. Especially, when $M=I_m$ and $N=I_n$, the matrix X satisfying (1.1) is called the M-P inverse of A, and is denoted by $X=A^+$, i.e., $A^+=A^+_{I_mI_n}$.

In 1960, A famous recursive method for computing the M-P inverse of A was

given by Greville [1].

Let $A_k \in C^{m \times k}$ be the submatrix of $A \in C^{m \times n}$ consisting of its first k columns. For $k=2, \cdots, n$ the matrix A_k is partitioned as $A_k = [A_{k-1} \ a_k],$

$$A_k = [A_{k-1} a_k],$$

where a_k is the k-th column of A. For $k=2, \dots, n$ the vectors d_k and c_k are defined by $d_k = A_{k-1}^+ a_k$ and $c_k = a_k - A_{k-1} d_k = (I - A_{k-1} A_{k-1}^+) a_k$. Then, the M - P inverse of A_k is

$$A_{k}^{+} = \begin{pmatrix} A_{k-1}^{+} - d_{k}b_{k}^{*} \\ b_{k}^{*} \end{pmatrix},$$

where

$$b_k^* = \begin{cases} (c_k^* c_k)^{-1} c_k^* & \text{if } c_k \neq 0, \\ (1 + d_k^* d_k)^{-1} d_k^* A_{k-1}^+ & \text{if } c_k = 0. \end{cases}$$

In [2, 3, 4] three different proofs for Greville's method were presented. Greville's method is natural in some applications, for example, the least-squares polynomial approximation problem, regression analysis, etc[5].

There are many formulas for computing the weighted M-P inverse $A_{NM}^{+}{}^{[6]}$, but they are very complex. In this paper, we will give a recursive algorithm for computing A_{MN}^+ . This method is a generalization of Greville's method, and the technique of its proof is new. This method suits the weighted least-squares problem.

^{*} Received February 26, 1985.

§ 2. Preliminaries

In this section we will give three lemmas.

Lemma 1. Let $A \in C_r^{m \times n}$, $X = A_{MN}^+$; then

(i) $R(X) = N^{-1}R(A^*), N(X) = M^{-1}N(A^*),$ $R(X^*) = MR(A), N(X^*) = MN(A),$ $AX = P_{R(A), M^{-1}N(A^*)}, XA = P_{N^{-1}R(A^*), N(A)}.$

(ii) $AX = A(A^*MA)^+A^*M$, $XA = N^{-1}A^*(AN^{-1}A^*)^+A$.

(iii) $(A_{MN}^+)^* = (A^*)_{N^{-1}M^{-1}}^+$

(iv) Let $U \in C_{m-r}^{m \times (m-r)}$ and $V \in C_{n-r}^{m \times (n-r)}$ such that $A^*U = 0$ and AV = 0; then $I - XA = V(V^*NV)^{-1}V^*N$, $I - AX = M^{-1}U(U^*M^{-1}U)^{-1}U^*$.

Proof. (i) See [1, chap. 3].

(ii) and (iii) See [2, chap. 3].

(iv) By hypothesis, $R(U) = N(A^*)$ and R(V) = N(A). Since V^*NV is p.d., inverse $(V^*NV)^{-1}$ exists and is also p.d. Set $V(V^*NV)^{-1}V^*N = E$. Then E is idempotent, and R(E) = R(V) = N(A) and $N(E) = N(V^*N) = N^{-1}N(V^*) = N^{-1}R(A^*)$. Hence $V(V^*NV)^{-1}V^*N = P_{N(A), N^{-1}R(A^*)} = I - P_{N^{-1}R(A^*)}$, N(A) = I - XA. A similar argument shows $I - AX = M^{-1}U(U^*M^{-1}U)^{-1}U^*$.

Lemma 2. Let $A \in C_r^{m \times n}$, $U \in C_{m-r}^{m \times (m-r)}$ and $V \in C_{n-r}^{n \times (n-r)}$ such that

$$A^*U = 0 \text{ and } AV = 0.$$
 (2.1)

Then

(i)
$$\begin{pmatrix} A & M^{-1}U \\ V^*N & 0 \end{pmatrix} is nonsingular.$$
 (2.2)

(ii)
$$\begin{pmatrix} A & M^{-1}U \\ V^*N & 0 \end{pmatrix}^{-1} = \begin{pmatrix} A_{MN}^+ & V(V^*NV)^{-1} \\ (U^*M^{-1}U)^{-1}U^* & 0 \end{pmatrix}.$$
 (2.3)

Proof. Set $X = A_{MN}^{+}$. From Lemma 1, we have

$$AX + M^{-1}U(U^*M^{-1}U)^{-1}U^* = AX + (I - AX) = I$$
 (2.4)

and from (2.1)

$$AV(V^*NV)^{-1}=0.$$
 (2.5)

Since $V^*NXA = V^*(NXA)^* = V^*A^*X^*N = 0$,

$$V^*NX = V^*NXAX = 0 (2.6)$$

and, obviously

$$V^*NV(V^*NV)^{-1} = I. (2.7)$$

Using (2.4)—(2.7), we may obtain (2.2) and (2.3) immediately.

Lemma 3. Let $\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$ be a partitioned matrix which is nonsingular, and

let the submatrix A11 also be nonsingular. Then

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}^{-1} = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, \tag{2.8}$$

where

$$B_{11} = A_{11}^{-1} + A_{11}^{-1} A_{12} B_{22} A_{21} A_{11}^{-1}, (2.9)$$