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Abstract

An order interval secant method is given. Its rate of convergenece is faster than that of order
jnterval Newton method in [17. The existence and uniqueness of a solution to nonlinear sysiems
and convergence of the interval iterative sequence are also proved.

Suppose f:DCR*—> K", X =z, g] = {s E R* | s<a<a} = D. A gimple interval
Newton method for testing the existence and uniqueness of solutions %o the
nonlinear equations

, ety s @)

and an order interval Newton method for solving nonlinear equations (1), were
given in [1]. This paper is to give an order interval secant method without the
derivative calculation of f, which converges faster than the order interval Newion
method. The convergence of this iterative method, as well as the existence and
unigueness of solutions to (1), are proved.

Notations used in this paper are the same as those in [1].

First, the definition of order convexity in [2] has to be generalized.

Definition 1. If there ewist 6 nonsingular matriz PE€L(R") and AE (0, 1) so
that |

Pf(ho+ (1—A)g) <APF () + (L~A) Pf () @)

for f:DCRr—>Rr in X = [z, ] and for any comparable v, € X (z<y or z22y), then
f i3 called P-order convex. Moreover, if

Pf (z) < Pf (y) ' (3)
for any s<z<y<z, then f is called P-isotone convex in X. If (2) ts replaced by
Pf(a+ (1—N)g) =APf (@) + 1—A) Pf(y), (2

then f is called P-order concave (or P-order upper conver) in X, Moreover, if (3) i3
valid then f 48 called P—isolone concave in X. _ -
Remark 1. If P=1I (the identity matrix), if is the order convexity defined
by [2]. That f is P-order convex in X implies that F =Pf ig order convex in X.
Definition 2. Suppose P is nonsingular, and s<o<y<z for any two poinis &=
(@4, <+, Tu)T and y= (Y1, *, Ya)” on the interval X = (v, «]. Let F=Pf, Az, y)=
(@:;) nxn 48 Called an nth-order difference mairiz, where

i
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Fi(‘y"“ :_g: (9 — o) ek)—F;(y~ gl (?}E—%)ﬂk)

Gy = - ; 4
‘ Ys— & % | (4)
poe P ~Fy— @u=80e) ;1 .. pimd e n
81— @y
If Ai(x, 4) is the i—th row of matriz A{z, v ), by (4),
Y1— 1
Ai‘(m: y) (g"_m>= (&iij b ﬂln) E =Fi(y)_Fl(m): £=11 *et, B, |
* ’yn_mn
then
Alw, ¥)(y—2)=F(y) —F(2), (b)

Lemma 1. Suppose f és P-order convew in X =[5, 2] and F=Pf; then, for
any 5<o<yYy<r,

Az, ) (y—a) <F(y)—F (2) <A@, y) 4—2), (6)
where z=y—t(y—a) <y, £=o+t(y—=z), $t€(0, 1), Az, ) and A(z, y) are nith—
order dufference matriced of F defined as (4). ’

If f i3 P-order concave, then for any v<ao<y<z,
Az, 7) (y—2)>F @) —F (@) >A(z, 9) (y—0), ()
Proof. Because f is P—order convex on X = [z, ], by (2),
F)<itF(z)+(1-H)F(y),
or F(z) —F(y<t(F(z)—F ()
for z=y—t(y—2) and £¢€ (0, 1). Then

F(y) —F (@) <(F@) — F @) == (F@) ~Fy—t@y—2))).
By (4) and (b), we have h
F@y) - F@) <= F@) ~F@) =+ AG, 4) @) = AG, 9) (-2,

Therefore, the right inequality in (6) holds. From same reason, if we set
¥ =x+i(y—2), by (2) we have

F@)-F@)>LF @) ~F@) =LA@, ) (o) = A, 7)(y—2).

Hence (6) holds.

(6") can be proved similarly.

Lemma 2. Suppose f is P-order conves in X = [z, ] and G—differentiable, and
set 2=y —~t{y—w), ¥ =c+i(y—=). Then, for any s<o<y<z and i€ (0, 1),

(1) F'(2) (y—o)<F (@) -F(@)<F (y) (y—2) (7)
and lim A(z, #)=F'(2), lim A(z, 9)=F'(¥),
(i) F'(m)<A(w, 7)<A(z, Y<A(, Y)<F(y). (8)

Moreover, suppose F'(z) end Az, y) are nonsingular for any s<es<y<r,
F ()10 and A(z, y)*>=0. Then

F'(2) 2 Az, )2 Az, )7 '= AR, @) 7'=F (y) 720 (9)



