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Abstract

This study deals with the theoretical basis of optimal control methods in primitive variable

formulation and penaity function formulation of Navier-Btokes problems. Numerical examples
demonstrating application are provided.

1. Introduction
”

The finite element formulation of the Navier-Stokes equation governing the flow
of a visoous inocompressible fluid can be clagsified into five basic categories: (1)
primitive variable formulation (or velocity-pressure formulation), (2) penalty
function formulation, (8) stream function formulation, (4) stream function—vortioity
formulation, and (b) optimal conirol formulation. Fach of them has relative
advantages and disadvantages. These formulations differ mainly in the way the
inoompressibility condition is ineluded in the formulation.

The optimal control formulation is to minimize the energy functional by the
introduction of the state veotor, which is a solution of a Stokes problem. The

incompressibility condition is treated as a constraint or is eliminated t0 introduce the
penalty funotion. |

2. Optimal Control Formulation

We consider the following boundary value problem of the stationary Navier-
- dtokes equations

C—vdut (UVU+Vp=f in Q,

J div =0 | in Q, | | Rk
uir,=0,(vSi—pn) =g omoQ=I'=IUT,

. Iy : :

- where # is the velocity of the fluid, » the pressure, 2 a bounded domain of R* with a
Lipschitz confinuous boundary.
We introduce the Sobolev space X = [ H*(£)]" with the norm

7l

)i = Sull, vREX,
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and seminorm
n
u|i=F|ul}, VucX.

Let Xo=[Hs(2)]", V={utluc X, @t|r,=0},Vi={u|ucV, divue=0}:s0 Xc¥VcX
and VnC:V.
We also introduce linear, bilinear and trilinear funotional:

B _ n aui awi
a0(w, ©) =»(Vat, Vo) —» 33 Jﬂ o B da,
G, v)=(dive, dive),

e (8, V) =ay(, v)+e7'G(u, v), Vu, v, wc X, (2.5
o (u; v, w)=((uV)v, w) =¢§1 L w! --g-z—:n wt dzx,

a(; U, w)=a, (& U, W) +a,(v; u, w), F, v)=Lf, vd+<g, VO,
We agssume € V' (dual space to V), g € [HV?(Iy)]* and HY*(I'y)= {the restriotion

to I'; of yog, g€ H'(2)}, o is the trace mapping from H(Q2) to HY2(IM), If u is
in HY23(I';), we deofine

5 Hﬁbﬂm.n= inf {||€J|1,- ﬁb='}’-:-9'fr.}-

ge H({)

Let H=/2(I'5) be the dual space to H2(I';), normed by
le* | —ara,ry= sup  [p*, pwirl/|wlijer, Yu"€H2(T,),

€ HY( )

where <+, +>p, denotes the duality between H*?(I'y) and H 2(I'y). It is not difficult
to prove {J, v>+<@g, U)r, VFEV', g €[H¥3(2)]", to be a linear continuous
tunctional on the space V', Therefore there is an FEF”’ such that

F, v={f, vO+g, O, YOCV (2.3)

EFHF-‘“:‘;- ”-f”-n Hﬂ”—lfﬂ, Iy»
where ||« |, denotes the dual norm of V",
In the velooity—pressure formulation, the variational form of (2.1) ig

to find # €V, such that
{aﬂ(u, V)ta(; 4, ©) =L{F, v), YOCEV,,
In the penalty function formulation, the variational form of (2.1) is
1o find &, €V such thai
{ws(u, v)ta (U, u, v)=<LF, v, Ve,
In both case, the variational form of (2.1) can be written as
to find # & H such that
{ A(e, v)+a:(u; #, v)=<{F, 6 vd), VvecH,.

In the case of (2.4), H =V, and A(#, ©) =ap(&4, ©); in the case of (2.5), H=¥ and
A(u: ‘U) 23:(“: U) :
We introduce the functional

J(0) =A@W—-§, v-§)/2, (2.7)
where £ is a solution of the following Stokes problem:

ECH, A, ) =<F, pp—ai(v; 0, m), Y9€EH, (2.8)

and

(2.4)

(2.5)

(2.6)



