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Abstract

In a previous work, the author and D.C. Dobson proposed a numerical method for

solving the complex Helmholtz equation based on the minimization variational princi-

ples developed by Milton, Seppecher, and Bouchitté. This method results in a system

of equations with a symmetric positive definite coefficient matrix, but at the same time

requires solving simultaneously for the solution and its gradient. Herein is presented a

method based on the saddle point variational principles of Milton, Seppecher, and Bouch-

itté, which produces symmetric positive definite systems of equations, but eliminates the

necessity of solving for the gradient of the solution. The result is a method for a wide class

of Helmholtz problems based completely on the Conjugate Gradient algorithm.
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1. Introduction

The Helmholtz equation

∇ · L∇u =Mu,

is useful in modeling wave propagation in problems arising from many different physical sit-

uations. We will focus only on the homogeneous equation for simplicity and brevity, but the

methods presented here can easily be extended to the non-homogeneous case. Suppose we

wish to solve the Helmholtz equation in a domain Ω ⊂ Rd, and assume that L and M are

complex-valued functions. A common source of numerical methods for solving this equation is

the variational principle∫
Ω

[−L∇u · ∇v̄ −Muv̄] dx = 0, ∀ v ∈ H1
0 (Ω). (1.1)

Since this is a stationary principle, the resulting system of equations is often indefinite, and

indefinite systems are generally more difficult to solve than a system of equations having a

positive definite coefficient matrix.

Because of the challenges in solving these indefinite systems, there has been much work

devoted to solving the Helmholtz equation by replacing the indefinite systems with equivalen-

t symmetric positive definite linear systems. Classical examples of such approaches are the

CGNR and CGNE methods [1], based on solving normal equations associated with the orig-

inal system. While such approaches produce positive definite systems, the normal equations

are often poorly conditioned and preconditioning can be difficult. Another related approach
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is First Order System Least Squares (FOSLS) [2–4],which converts the second order equation

into an equivalent system of first order equations and then solves a least squares problem for

this system. The method presented here also produces positive definite systems of equations,

but it does so without reformulation as a least squares problem.

When iterative methods are employed to solve a system of linear equations, it is usually

necessary to precondition the original system in order to speed up convergence. A great deal of

work has been dedicated to formulating effective preconditioning strategies for the linear systems

resulting from discretizations of the Helmholtz equation [5]. One approach that has seen much

success is the Shifted Laplacian preconditioner [6–8]. In this approach, the precoditioner for

the system of equations corresponding to ∆u + k2u = 0 is the matrix corresponding to the

“shifted” equation ∆u + (α + iβ)u = 0. If the imaginary shift β is large enough, multigrid

methods are expected to be successful in solving the shifted problem, and if α ≈ 1, the shifted

operator should be a good preconditioner for the original problem. While this approach is

often effective, in [9] the authors point out the advantages in using a preconditioner that is

symmetric positive definite. When the preconditioning matrix is not positive definite, the

coefficient matrix of the preconditioned system is not symmetric with respect to any inner

product, which limits the methods available for solving the resulting system. The solution

suggested in [9] is to use an approximation of the absolute value of the original coefficient

matrix as preconditioner. In the method proposed here, both the matrices and the suggested

preconditioners are symmetric positive definite, and therefore a wide range of Krylov subspace

methods is available. In particular, we shall demonstrate the results obtained with Conjugate

Gradient, which has a short recurrence and is very simple to implement and parallelize.

As a background to this approach, we follow [10], where Milton, Seppecher, and Bouchitté

developed variational principles that apply to the Helmholtz equation above, as well as the

time-harmonic Maxwell equations and the equations of linear elasticity in lossy materials. To

derive these variational principles, we first define the dual variable

v = iL∇u.

Then (
L 0

0 M

)(
∇u
u

)
=

(
L∇u
Mu

)
=

(
−iv

−i∇ · v

)
,

or equivalently,

G = ZF ,

where

F =

(
∇u
u

)
, G =

(
−iv

−i∇ · v

)
, Z =

(
L 0

0 M

)
.

For a complex quantity z, we will write z′ = Re(z) and z′′ = Im(z). Taking real and imaginary

parts, the constitutive relation becomes

G′ = Z ′F ′ − Z ′′F ′′ and G′′ = Z ′F ′′ + Z ′′F ′,

which can be written in matrix form as(
G′′

G′

)
=

(
Z ′′ Z ′

Z ′ −Z ′′

)(
F ′

F ′′

)
. (1.2)


