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Abstract. An efficient real-time computational method for a feedback control problem

of the Boussinesq equations is studied. We consider a simple and effective feedback con-

trol law based on the relationship between the control and adjoint variables in the opti-

mality system. We investigate a closure type modeling in reduced order model (ROM) of

this problem for real-time computing. In order to improve the existing well-known POD-

ROM method, the deep learning technique, which is currently being actively researched,

is studied and applied. Computational results presented show that the suggested meth-

ods work well.
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1. Introduction

Many mathematicians and scientists have long worked on the mathematical analysis

and computations of optimal control problems for fluid flows. Also, feedback control prob-

lem has been studied for efficient real-time computations. In this article, we study efficient

computations for a linear feedback control problem of the Boussinesq equations describing

viscous incompressible fluid flow coupled with thermodynamics. Dynamics and approx-

imations for linear feedback controls for tracking velocities in Navier-Stokes in [14] and

Bénard flows in [20, 21] were considered. Their goals were to steer over time a candi-

date velocity field u and fluid temperature θ to a target velocity field U ∈ L2(Ω) and fluid

temperature Θ ∈ L2(Ω) by appropriately controlling the body forces of the velocity and

temperature field. For real-time and efficient numerical computations, we study the re-

duced order modeling technique that has been researched for the past 30 years and the

deep learning method that has been very actively researched recently.
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First, we consider an optimal control problem for the non-dimensionalized Boussinesq

equations, given T > 0, the target velocity U , and the target temperatureΘ, seek (u, f ,θ ,τ)

such that the cost functional

J (u, f ) =
1

2

∫ T

0

∫

Ω

�
|u −U |2 + |θ −Θ|2

�
dΩd t +

∫ T

0

∫

Ω

�α1

2
| f |2 +

α2

2
|τ|2
�

dΩd t

+
δ1

2

∫

Ω

|u(T )−U(T )|2dΩ+
δ2

2

∫

Ω

|θ(T )−Θ(T )|2dΩ (1.1)

is minimized subject to constraints

u t − ν∆u + (u · ∇)u +∇p− βθg= f in (0, T )×Ω,

∇ · u = 0 in (0, T )×Ω,

θt − κ∆θ + (u · ∇)θ = τ in (0, T )×Ω,

u|∂Ω = 0, u(0, x ) = u0(x ), θ(t, x )|∂Ω = 0, θ(0, x ) = θ0(x ),

(1.2)

where Ω is a bounded open set in R2 denoted by ∂Ω. Here u is the velocity vector, p is the

pressure, θ is the temperature of the fluid, f is a source field, τ is a heat source. The func-

tions u0 and θ0 are given, g is a unit vector in the direction of gravitational acceleration,

β > 0 is any positive number, ν > 0 is the kinematic viscosity and κ > 0 is the thermal con-

ductivity parameter. Using the Lagrange multipliers method, one can obtain the following

optimality system: seek (u, p,θ , w , r,ψ) such that

u t − ν∆u + (u · ∇)u +∇p− βθg = f in (0, T )×Ω,

∇ · u = 0 in (0, T )×Ω,

θt − κ∆θ + (u · ∇)θ = τ in (0, T )×Ω,

(1.3a)

− w t , v + ν∆w + (w · ∇)u + (u · ∇)w +∇r − βψg = u −U in (0, T )×Ω,

∇ ·w = 0 in (0, T )×Ω,

−ψt + κ∆ψ+ (w∇)ψ= θ −Θ in (0, T )×Ω,

(1.3b)

w = −α1 f , ψ = −α2τ (1.3c)

with the homogeneous boundary conditions, initial velocity and temperature (u0,θ0) for

the state equations, and the final conditions

w (T, x ) = δ1

�
u(T )−U(T )
�
, ψ(T, x ) = δ2

�
θ(T )−Θ(T )
�

for the adjoint equations. The optimal system (1.3) is a system of nonlinear partial dif-

ferential equations consisting of nonlinear state equations (1.3a), linear adjoint equations

(1.3b), and an optimality condition (1.3c). The state equations are forward in time and the

adjoint equations are backward in time. For these reasons, it is known that the numerical

computation of the optimality system is almost impossible or the amount of computation is
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prohibitive. In order to overcome the enormous amount of computation of the optimal sys-

tem, some piecewise optimal control methods were considered [22] and references therein.

Although the amount of computations was reduced through piecewise optimization control,

a huge amount of computations was still required.

From the Eqs. (1.3c), we see that controls f and τ are related linearly with the adjoint

variables w and ψ, respectively, which are solutions of the adjoint Eqs. (1.3b) with f =

−(1/α1)w and τ = −(1/α2)ψ. Also, we see that (w ,ψ) is linearly dependent only on the

source terms of the adjoint Eqs. (1.3b) (u−U,θ −Θ) since the adjoint equations are linear

equations. So, we see that

f ∝
1

α1

(u −U) and τ ∝
1

α2

(θ −Θ).

Usually, α1 and α2 are very small real numbers to get a small value of the first term in the

right-hand side of (1.1). Thus, we may let

f = F − γ1(u −U) and τ= T − γ2(θ −Θ)

with some large values of γ1 and γ2. The smaller α1 and α2, the greater control f and τ.

Increasing controls is not a problem in numerical simulation, but it is expensive in actual

control problems. Therefore, γ1 and γ2 can be set according to the actual problem. The

controls are achieved by means of a linear feedback law relating the body forces to the

velocity and temperature fields. (F ,T ) will be defined in (2.1). Thus, a linear feedback

control problem of Boussinesq equations can be formulated by

u t − ν∆u + (u · ∇)u +∇p− βθg= F − γ1(u −U) in (0, T )×Ω,

∇ · u = 0 in (0, T )×Ω,

θt − κ∆θ + (u · ∇)θ = T − γ2(θ −Θ) in (0, T )×Ω.

(1.4)

The feedback control problem (1.4) is linear control, which can be explicitly solved. This

would actually improve the efficiency of the proposed method. In addition, we point out

that the optimal control would not result major computational cost could avoid more de-

tailed discussions on the classic optimal control solvers. Feedback control can effect good

velocity and temperature tracking and at the same time the solution can be obtained step-

by-step in time at the cost of a single flow problem solve. Some efficient numerical algo-

rithm for solving data driven feedback control problems was considered in [4] and refer-

ences therein.

Proper orthogonal decomposition (POD) is a common technique for extracting the dom-

inant mode that contributes the most to the energy of the entire system [7,28]. POD com-

bined with Galerkin projection (GP) has been used for many years to formulate ROMs for

dynamic systems [5,9,10,23,29,30]. In such ROMs, the full-order set of equations is pro-

jected onto a reduced space, resulting in a dynamic system (modal coefficients) of much

lower order than the full order model (FOM).

Machine learning (ML) tools have had considerable success in the fluid mechanics com-

munity, identifying basic structures and mimicking dynamics [2,8,25,26]. However, mod-

eling with ML, especially deep learning, has faced strict opposition from both academia
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and industry alike because it can produce non-physical results due to its black box nature

and its lack of interpretability and generalization [12,18]. In the course of conducting this

study, we also experienced these points seriously. However, the fluid mechanics problem

solving using deep learning is considered a promising research in the future, and we think it

should be continued. A perspective on machine learning for advancing fluid dynamics can

be found in a recent review article [8] and references therein. Recently, in [19], using the

POD and LSTM, the efficient computational method of the linear feedback control problem

of the Navier-Stokes equations has been studied.

The plan of the rest of the paper is as follows. In Section 2, we define and discuss

the linear feedback control. In Section 3, we derive a time-space discretized version of

the feedback control of Boussinesq equations. We also explain the POD reduced basis and

Galerkin Projection ROM. In Section 4, we introduce a closure model using deep neural

networks. Finally, some numerical results will be given in Section 5.

2. Notations and Formulation of Feedback Control Problem

2.1. Notations and weak forms

We shall use the standard function spaces and their norms, for details see [1]. For any

nonnegative integer m, we define the Sobolev space Hm(Ω) by

Hm(Ω) :=
�
u ∈ L2(Ω) : Dαu ∈ L2(Ω) for 0≤ |α| ≤ m

	
,

where Dαu denotes the weak (or distributional) partial derivative and α is a multi-index,

|α|=
∑

i αi. Note that H0(Ω) = L2(Ω). We equip Hm(Ω) with the norm

‖u‖2m =
∑

|α|≤m

‖Dαu‖20.

The usual inner product associated with Hm(Ω)will be denoted by (·, ·)m. Let Hm
0
(Ω) denote

the closure of C∞0 (Ω) under the norm ‖ · ‖m, and H−m
0
(Ω) be the dual spaces of Hm

0
(Ω).

For vector valued functions, we define the Sobolev space Hm(Ω) (in all cases, boldface

indicates vector-valued) by

Hm(Ω) := {u | ui ∈ Hm(Ω), i = 1,2},

where u = (u1,u2) and its associated norm by

‖u‖m =

�
2∑

i=1

‖ui‖
2
m

� 1
2

.

We also define a particular subspace and solenoidal spaces — viz.

L2
0
(Ω) :=

�
p ∈ L2(Ω) :

∫

Ω

p d x = 0

�
, V (Ω) :=
�
u ∈ C∞

0
(Ω) :∇ · u = 0
	

,

V(Ω) :=
�
u ∈ H1

0
(Ω) :∇ · u = 0
	

, W(Ω) :=
�
u ∈ L2(Ω) :∇ · u = 0

	
.
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The spaces V(Ω) and W(Ω) are closures of V (Ω) in H1
0
(Ω) and L2(Ω), respectively. All sub-

spaces are equipped with the norms inherited from the corresponding underlying spaces.

For the spaces L2(Ω) and L2(Ω), we denote the inner product by (·, ·) and the norm by

‖ · ‖0 = ‖ · ‖. Given T , we introduce the notation Lp((0, T ) : Hm(Ω)) for the temporal-

spatial function spaces defined on (0, T )×Ω with the norm

‖u‖Lp((0,T):X ) =

�∫ T

0

‖u‖pd t

� 1
p

.

In order to define the weak form of the Boussinesq equations, for all u, v , w ∈ H1(Ω),

θ , s ∈ H1(Ω), and q ∈ L2(Ω), we introduce bilinear and trilinear forms by

a0(u, v) =

∫

Ω

∇u :∇v dx , κa1(θ , s) =

∫

Ω

∇θ · ∇s dx ,

b0(u, v , w ) =

∫

Ω

(u · ∇)v · w dx , b1(u,θ , s) =

∫

Ω

(u · ∇θ)s dx for all u ∈ H1(Ω),

c(v ,q) = −

∫

Ω

q∇ · v dx , d(θ , v) =

∫

Ω

θg · v dx .

We start with a precise definition of the admissible target velocity and temperature.

(U ,Θ) is said to be in the set of admissible target velocities and temperatures Uad if U is

a divergence free vector field and Θ is a temperature field in the set {(u ,θ) : u ∈ C((0, T ) :

H2(Ω)∩H0(Ω)),θ ∈ C((0, T ) : H2(Ω)∩ H1
0
(Ω)) | ∂tu ∈ C((0, T ) : H1(Ω)),∂tθ ∈ C((0, T ) :

H1(Ω))}. The corresponding body forces (F ,T ) are generated by

F(t, x ) =
∂U(t, x )

∂ t
− ν∆U(t, x ) +

�
U(t, x ) · ∇
�
U(t, x )− βΘ(t, x )g,

T (t, x ) =
∂Θ(t, x )

∂ t
− κ∆Θ(t, x ) +

�
U(t, x ) · ∇
�
Θ(t, x ).

(2.1)

Let u ∈ L2((0, T ) : H1
0(Ω)), p ∈ L2((0, T ) : L2

0(Ω)) and θ ∈ L2((0, T ) : H1
0(Ω)) denote

the state variables, i.e., the velocity, pressure and temperature fields, respectively. Let f ∈
L2((0, T ) : L2(Ω)) and τ ∈ L2((0, T ) : L2(Ω)) denote the distributed controls. The state

variables are constrained to satisfy the weak form of the Boussinesq equations (1.2) a.e.

for t in (0, T ), i.e.

�
∂ u

∂ t
, v

�
+ νa0(u, v) + b0(u,u, v) + c(v , p)− βd(θ , v) = ( f , v) for all v ∈ H1

0(Ω),

c(u ,q) = 0 for all q ∈ L2
0(Ω),�

∂ θ

∂ t
, s

�
+ κa1(θ , s) + b1(u ,θ , s) = (τ, s) for all s ∈ H1

0(Ω)

with the homogeneous boundary conditions and initial velocity field u0(x ) and initial tem-

perature field θ0(x ). (·, ·) denotes the L2 inner product of the functions over the domain Ω.
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2.2. Feedback control

From the Eqs. (1.4), a linear feedback control problem of Boussinesq equations can be

written in a weak form by

(u t , v) + νa0(u, v) + b0(u, u, v) + c(v , p)− βd(θ , v) = (F − γ1(u −U), v),

c(u ,q) = 0,

(θt , s) + κa1(θ , s) + b1(u,θ , s) = (T − γ2(θ −Θ), s),

(2.2)

∀v ∈ H1
0(Ω), ∀q ∈ L2

0(Ω), ∀s ∈ H1
0(Ω) with initial conditions u0(x) ∈ V(Ω) and θ0(x) ∈

H1
0(Ω) and homogeneous boundary conditions. An admissible solution for our control prob-

lem can be defined as follows. Given T , u0(x) ∈ V(Ω), θ0(x) ∈ H1
0
(Ω), and (U ,Θ) ∈ Uad ,

the solution (u, p,θ) of (2.2) is called an admissible solution for the control problem if

(u, p,θ) ∈ L2((0, T );H1
0
(Ω))× L2((0, T ); L2

0
(Ω))× L2((0, T ); H1

0
(Ω)) and

d

d t

�
||u −U||2 + ||θ −Θ||2

�
≤ 0, a.e. t ∈ (0, T ).

The set of all admissible solutions is notated as Aad .

The goal of our feedback control problem is to have the controlled solution (u,θ)match

(U ,Θ) over time — i.e. we want the solution (u,θ) to belong to the set of admissible

solutions and ‖u −U‖2 + ‖θ −Θ‖2 → 0 as t increases. The next theorem shows that this

decay property holds and furthermore that this decay is exponential.

Theorem 2.1 (cf. Lee & Choi [20]). If (u , p,θ , f ,τ) is a solution of the linear feedback

control problem (2.2) with γ1 ≥ M and γ2 ≥ N, then

(i) The solution (u, p,θ , f ,τ) belongs to Aad , i.e.

d

d t

�
‖u −U‖2 + ‖θ −Θ‖2

�
≤ 0, a.e. t ∈ (0, T ).

(ii) The following estimate:

‖u −U‖2 + ‖θ −Θ‖2 ≤
�
‖u0 −U0‖

2 + ‖θ0 −Θ0‖
2
�

e−2γ̃t ,

where

γ̃ =min{γ1 −M ,γ2 − N}, γ1 −M ≥ 0, γ2 − N ≥ 0,

and

M =max

�
0,

1

ν
‖∇U‖2

L∞((0,T);L2(Ω))
+
β

2
+
ν2

8κ
−
νC0

4

�
,

N =max

§
0,

1

ν3
‖∇Θ‖4

L∞((0,T);L2(Ω))
+
β

2
−
κC1

2

ª

holds a.e. in (0, T ).

Fig. 4 in Section 5 shows that the controlled states (u ,θ) in numerical simulations

converge exponentially to desired states (U ,Θ). Here we set γ = γ1 = γ2 without loss of

generality.
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3. POD-Galerkin Reduced Order Model (GP-ROM)

3.1. Finite element approximation

A typical finite element approximation [13] of (2.2) is defined as follows: we first

choose conforming finite element subspaces Vh ⊂ H1(Ω), Sh ⊂ L2(Ω) and Xh ⊂ H1(Ω) and

then define Vh,0 = H1
0(Ω), Sh,0 = L2

0(Ω) and Xh,0 = H1
0(Ω). One then seeks uh(t, ·) ∈ Vh,0,

ph ∈ Sh,0 and θh(t, ·) ∈ Xh,0 such that

�
∂ uh

∂ t
, vh

�
+ νa0(uh, vh) + b0(uh; uh, vh) + c(vh, ph)

− βd(θh, vh) + γ1(uh, v)

= (F + γ1U , vh) for all vh ∈ Vh,0,

c(uh,qh) = 0 for all qh ∈ Sh,
�
∂ θh

∂ t
,ψh

�
+ κ a1(θh,ψh) + b1(uh,θh,ψh) + γ2(θh,ψh)

= (T + γ2Θ,ψh) for all ψh ∈ Xh,0,

uh(0, x ) = uh,0(x ), θh(0, x ) = θh,0(x ),

(3.1)

where u0,h(x ) ∈ Vh,0 and θh,0(x ) ∈ Xh are approximations — viz. the projections of

u0(x ) and θ0(x ) onto each finite element space, respectively. Discretization is completed

by choosing a time-marching method such as the backward Euler scheme.

Let {tn}
N
n=1 be a partition of [0, T ] into equal intervals ∆t = T/N and tn = t0 + n∆t

with t0 = 0 and tN = T . Then, a fully discretized version of (3.1) is given by

1

∆t

�
u
(n)

h
− u

(n−1)

h
, vh

�
+ νa0

�
u
(n)

h
, vh

�
+ b0

�
u
(n)

h
; u
(n)

h
, vh

�
+ c
�
vh, p

(n)

h

�

− βd
�
θ
(n)

h
, vh

�
+ γ1

�
u
(n)

h
, vh

�

=
�
F (n) + γ1U (n), vh

�
for all vh ∈ Vh,0,

c
�
u
(n)

h
,qh

�
= 0 for all qh ∈ Sh,

1

∆t

�
θ
(n)

h
− θ (n−1)

h
,ψh

�
+ κa1

�
θ
(n)

h
,ψh

�
+ b1

�
u
(n)

h
,θ
(n)

h
,ψh

�
+ γ2

�
θ
(n)

h
,ψh

�

=
�
T (n) + γ2Θ

(n),ψh

�
for all ψh ∈ Xh,0

for N = 1,2, . . . , N , initial velocity u
(0)

h
(x ) = πhu0(x ) and temperature θ

(0)

h
(x ) = πhθ0(x ).

Here, U (n) = U(tn, x ), Θ(n) = Θ(tn, x ) and

�
F (n), vh

�
=

1

∆t

�
U
(n)

h
−U

(n−1)

h
, vh

�
+ νa0

�
U
(n)

h
, vh

�
+ b0

�
U
(n)

h
;U
(n)

h
, vh

�
− βd
�
Θ
(n)

h
, vh

�
,

�
G
(n)

h
,ψh

�
=

1

∆t

�
Θ
(n)

h
−Θ

(n−1)

h
,ψh

�
− κa1

�
Θ
(n)

h
,ψh

�
+ b1

�
Θ
(n)

h
,Θ
(n)

h
,ψh

�
.
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3.2. GP-ROM

We now apply a POD basis to define a reduced-order model for our feedback system.

Let {ϕ(γ1)}
Ku

k=1
and {ξ(γ2)}

Kθ
k=1

be a Ku - and Kθ - dimensional POD basis corresponding to

the snapshot set {un(γ1)}
N
n=1 and {θn(γ2)}

N
n=1, respectively, where Ku ≪ N and Kθ ≪ N .

Let

Uu(γ1) = span{ϕk(γ1)}
Ku

i=1
⊂ Vh,0, Xθ (γ2) = span{ξk(γ2)}

Kθ
i=1
⊂ Xh,0.

From now on, we will omit γ1 and γ2 on the assumption that there is no confusion. We

will use γ when we want to emphasize the use of γ. For a given reduced spaces Uu and

Xθ , GP-ROM finds the approximation of the velocity and temperature fields spanned by the

low-dimensional spaces,

u ≈ uPOD
h
(t, x ) ≡

Ku∑

k=1

ak(t)ϕ k(x ), θ ≈ θ K
h
(t, x ) ≡

Kθ∑

k=1

bk(t)ξk(x ),

where {ak(t)}
Ku

k=1
and {bk(t)}

Kθ
k=1

are the sought time-varying coefficients. The GP-ROM can

be obtained by projecting the FOM (full order finite element model) onto the POD space

Ku∑

k=1

d

d t
ak(t)(ϕ k,ϕℓ) + ν

Ku∑

k=1

ak(t)

∫

Ω

∇ϕk :∇ϕℓ dΩ− β

Ku∑

k=1

bk(t)(ξkg,ϕℓ)

+

�
Ku∑

m=1

am(t)ϕm · ∇

Ku∑

k=1

ak(t)ϕk,ϕℓ

�
+ γ1

Ku∑

k=1

ak(t)(ϕ k,ϕℓ)

=

Ku∑

k=1

hk(t)(ϕk,ϕℓ) + γ1

Ku∑

k=1

ck(t)(ϕk,ϕℓ),

Ku∑

k=1

ak(0)(ϕk,ϕℓ) = (u0,ϕℓ),

Ku∑

k=1

ck(t)(ϕ k,ϕℓ) = (U ,ϕℓ),

Kθ∑

k=1

d

d t
bk(t)(ξk ,ξ j) + κ

Kθ∑

k=1

bk(t)(∇ξk,∇ξ j) +

�
Kθ∑

m=1

am(t)ϕm · ∇

Kθ∑

k=1

bk(t)ξk,ξ j

�

+ γ2

Kθ∑

k=1

bk(t)(ξk,ξ j)

=

Kθ∑

k=1

ok(t)(ξk,ξ j) + γ2

Kθ∑

k=1

dk(t)(ξk ,ξ j),

Kθ∑

k=1

bk(0)(ξk,ξ j) = (θ0,ξ j),

Kθ∑

k=1

dk(t)(ξk,ξ j) = (Θ,ξ j)

for ℓ= 1, . . . , Ku and j = 1, . . . , Kθ .
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Equivalently, we have a system of nonlinear ordinary differential equations, which de-

termines the coefficient functions {ak(t)}
Ku

k=1
and {bk(t)}

Kθ
k=1

G
d

d t
a(t) = −νKa(t)−

�
a(t)
�T
Na(t) + βLb(t)− γ1G

�
a(t)− c(t)
�
+Gh(t), (3.2)

W
d

d t
b(t) = −κPb(t)−

�
a(t)
�T
Qb(t)− γ2W
�
b(t)− d(t)
�
+Wo(t), (3.3)

where the Gram matrices G andW, stiffness matricesK and P, convection tensors N and P,

given vectors c(t), d(t), h(t) and o(t) and solution vectors a(t) and b(t) are respectively

given by

Gkℓ = (ϕk,ϕℓ), Kkℓ =

∫

Ω

∇ϕk :∇ϕℓdΩ, Nkℓm =
�
(ϕk · ∇)ϕℓ,ϕm

�
,

Lkℓ =
�
ξkg,ϕℓ
�
, Wkℓ =
�
ξk,ξℓ
�
, Pkℓ =
�
∇ξk · ∇ξℓ
�
, Qkℓm =
�
(ϕk · ∇)ξℓ,ξm

�
,

ck(t) =
�
U(t),ϕk

�
, dk(t) =
�
Θ(t),ξk

�
, hk(t) =
�
F(t),ϕ k

�
, ok(t) =
�
T (t),ξk

�
.

The initial conditions for the ROM are have the form

ak(0) = (u0,ϕk), bk(0) =
�
θ0,ξk

�
.

POD basis functions satisfy the orthogonality conditions
∫

Ω

ϕ i(x )ϕ j(x ) dx = δi j ,

∫

Ω

ξi(x )ξ j(x ) dx = δi j ,

where δi j is 1 if i = j and 0 otherwise. Let

qk(t) =

¨
ak(t) for k = 1, . . . , Ku ,

bk−Ku
(t) for k = Ku + 1, . . . , Ku + Kθ .

Then, (3.2) can be written by

q̇i(t) =

Ku∑

j=1

Di jq j(t) +

Ku∑

j=1

Ku∑

k=1

Ci jkqk(t)q j(t)− γ1

�
qi(t)− ci(t)
�
+ hi(t), (3.4)

where

Di j =

¨
−νKi j for j = 1, . . . , Ku ,

−β Li j for j = Ku + 1, . . . , Ku + Kθ ,

and

Ci jk = N jki

for i, k = 1, . . . , Ku . Also, (3.3) can be written by

q̇i(t) =

Kθ∑

j=1

Di jq j(t) +

Ku+Kθ∑

j=Ku+1

Ku∑

k=1

Ci jkqk(t)q j(t)− γ1

�
qi(t)− ci(t)
�
+ hi(t), (3.5)
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where

Di j = −κPi j for j = Ku + 1, . . . , Ku + Kθ

for j = Ku + 1, . . . , Ku + Kθ , and

Ci jk = Qk ji

for j = Ku + 1, . . . , Ku + Kθ , k = 1, . . . , Ku , and i = Ku + 1, . . . , Ku + Kθ . Here we use the

shifted index for ξ(x ) like that

ξKu+ j(x ) ⇐= ξ j(x ) for j = 1, . . . , Kθ .

Combining (3.4) and (3.5) leads to a dynamical system for the POD coefficients of the

form

q̇(t) = Dq(t) + [Cq(t)]q(t) (3.6)

with initial conditions

qi(0) =

¨
ai(0) for i = 1, . . . , Ku ,

bi−Ku
(0) for i = Ku + 1, . . . , Ku + Kθ .

4. Closure Type Model Using Least Squares Projection and LSTM

4.1. Closure model using least squares projection

Current ROMs cannot be used in complex, realistic settings, since they require too many

modes (degrees of freedom) [24]. The drastic ROM truncation is one of the most important

reasons for the ROMs’ numerical inaccuracy. To overcome this, closure type modeling is

studied using ideas from the previous articles [6, 11, 15, 17] and references therein. One

needs to model the effect of the discarded ROM modes on the ROM dynamics — i.e. on

the time evolution of the resolved ROM modes

q̇(t) = Dq(t) + [Cq(t)]q(t) +C
�
q(t)
�
,

where C(q(t)) is a low-dimensional term that models the effect of the discarded ROM

modes on the active modes.

From now on, we let K = Ku = Kθ for simplicity. It is easy to see that the computa-

tional cost of GP-ROM (3.6) is O (K3), which limits the number of modes to be used in the

ROM. Several efforts have been devoted to introduce stabilization and closure techniques

to account for the effects of truncated modes on ROM’s dynamics. In this study, we utilize

a LSTM closure model to improve the accuracy and efficiency for our computations.

Let w = (u ,θ). Then the model reduction error E ROM(t, x ,γ) is equal to

E ROM(t, x ,γ) = w FOM(t, x ,γ)− w ROM(t, x ,γ)

= w FOM(t, x ,γ)− w Proj(t, x ,γ) + w Proj(t, x ,γ)− w ROM(t, x ,γ)

= EW (γ)⊥(t, x ) + EW (γ)(t, x ).
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The first term E
W (γ)⊥ is the least-squares projection error that is a result of neglecting the

components of w FOM(t, x ,γ) that lie in the space orthogonal to W (γ). This error is repre-

sented as E
W (γ)⊥ in Fig. 1. The second term EW (γ) is the reduced order modeling error that

results from solving a different dynamical system than the original. This error vector lies in

the subspace W (γ) spanned by the reduced order basis {(ϕ i,ξi)}
K
i=1

. This error represents

EW (γ) in Fig. 1.

Figure 1: Discrepancy of the snapshot trajectories between the parameterized FOM, ROM, desired state
and least squares projected solutions after Galerkin projection.

To reduce the error E ROM, we use a closure model which can be written as

q̇(t) = Dq(t) + [Cq(t)]q(t) +C(q ,α),

where αk(t) is the least-squares (LS) projection modal coefficients which can be obtained

by

αk(t) =

¨�
u(t, x ),ϕk

�
for k = 1, . . . , K ,�

θ(t, x ),ξk

�
for k = K + 1, . . . , 2K .

The LS projection modal coefficients may include some information of the hidden physics

and its interaction with the dynamical core of the system. For simplicity, we assume that Ck

depends only on qk and αk for each k. The correction function Ck can be defined in various

way, especially and naturally,

Ck(t) = f
�
αk(t)− qk(t)
�
.

Appropriate machine learning algorithms can be used to learn this correction term Ck such

as ResNET and LSTM networks, so on. In this article, we employ LSTM neural network

algorithm to learn the mapping from LS projection modal coefficients to the correction

term

{α1, . . . ,αK} ∈ R
K 7→ {C1, . . . , CK} ∈ R

K .
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4.2. LSTM-ROM

In this subsection, we briefly introduce LSTM-ROM. Please refer to [19] for more details.

The LS projection modal coefficients include the hidden physics and its interaction with the

dynamical core of the system. We can then define the correction term as

Correction := C
(n)

k
= f
�
α
(n)

k
− q

(n)

k

�
.

A supervised learning framework is applied to model the correction term C with information

obtained from FOM and projection data.

We train our LSTM neural network to learn the mapping from GP modal coefficients

to the correction term. Since GP modal coefficients are used as input features to the

LSTM network, the parameter γ governing the system’s behavior is taken implicitly into

account. Fig. 2 shows a sketch of Long Short-Term Memory unit and an architecture of

LSTM network training. For more details for LSTM architecture, one can refer to the

articles [2, 25–27] and references therein. Related computer programs can be obtained

from GitHub (https://github.com/), namely ETC-ROM Master, Hybrid-Modeling Mas-

ter, UROM Master and mnni-rom Master, ROM-FOM-Coupling-main, so on. Once the model

is trained, we could correct the GP modal coefficients with LSTM-based correction to ap-

proximate true projection modal coefficients.

Figure 2: LSTM Cell (left) and LSTM Training where the number of lookbacks r = 5.

5. Computational Procedure and Numerical Results

5.1. Full order finite element solutions

Let σN = {tn}
N
n=0

be a partition of [0, T ] into equal intervals ∆t = T/N with t0 =

0 and tN = T . The finite element spaces are chosen to be piecewise quadratic for the
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velocity, temperature and linear for the pressure — i.e. the Taylor-Hood finite element

pair for Navier-Stokes equations, based on a rectangular mesh with ∆x = 1/32. We use

FreeFEM++ [16]. After the snapshot is created, all computations are performed using

Python 3.8. We compute the desired states by solving the equations

∂U

∂ t
− ν∆U +∇UT + (U · ∇)U +∇p− βΘg = 0 in (0, T )×Ω,

∇ ·U = 0 in (0, T )×Ω,

U |∂Ω = 0, U(0, x ) = U0(x ),

∂Θ

∂ t
−∇ · (κΘ) + (U · ∇)Θ = 10 sin(πx ) sin(1.0+ 4t)πy in (0, T )×Ω,

Θ|∂Ω = 0, Θ(0, x ) = Θ0(x ),

where ν = 10, β = 100 and κ = 1. (U0,Θ0) is chosen like in Fig. 3. Once we obtain the

desired states (U ,Θ), we compute the distributed control T using the Eq. (2.1). In this

example, we set F = 0.

Now, generate snapshot set for each γ = 10, γ = 20 and γ = 30 using the following

equations:
�
∂ uh

∂ t
, vh

�
+ ν a0(uh, vh) + b0(uh; uh, vh) + c(vh, ph)− β d(θh, vh) + γ1(uh, v)

= (γ1U, vh) for all vh ∈ Vh,0,

c(uh,qh) = 0 for all qh ∈ Sh,
�
∂ θh

∂ t
,ψh

�
+ κ a1(θh,ψh) + b1(uh,θh,ψh) + γ2(θh,ψh)

= (T + γ2Θ,ψh) for all ψh ∈ Xh,0

with the initial conditions

u(0, x ) = −U0(x ), θ(0, x ) = −Θ0(x ).

One can see the initial conditions for the desired states and controlled states in Fig. 3. This

initial velocity rotates in the opposite direction to the target initial velocity U0.

Figure 3: From the left, the initial velocity and temperature for controlled flows, and the velocity and
temperature for desired flows.



14 G.-R. Piao and H.-C. Lee

For this computation, we use ∆t = 0.001, h = 1/32 and T = 0.2. The number of un-

knowns (degree of freedom) is 16,900. In this test we are also interested in the convergence

history for the parameters involved. In Fig. 4, one can see the exponential convergence of

the controlled solution to the desired solutions in time. The solutions over time are shown

in Fig. 5.

0.00 0.05 0.10 0.15 0.20
t

0.000

0.005

0.010

0.015

||
u
(t
)
−
U
(t
)|
| 2

γ = 10 γ = 20 γ = 30

0.00 0.05 0.10 0.15 0.20
t

10−4

10−2

lo
g
||
u
(t
)
−
U
(t
)|
| 2

0.00 0.05 0.10 0.15 0.20
t

0.000

0.002

0.004

||
θ
(t
)
−
Θ
(t
)|
| 2

0.00 0.05 0.10 0.15 0.20
t

10−5

10−3

lo
g
||
θ
(t
)
−
Θ
(t
)|
| 2

Figure 4: ||u(t)−U(t)||L2 and ||θ (t)−Θ(t)||L2 in different parameter γ.

5.2. POD ROM

The three set of POD reduced basis for each γ = 10,20,30 are determined from the

corresponding snapshot set as described in Section 3. Note that each basis function satisfies

the discretized continuity equations — i.e. it is discretely solenoidal. If one perform least-

squares projection of each snapshot to corresponding ROM space, the errors for velocity

field and temperature field are about 10−6 and 10−7, respectively. However, if the desired

state is projected on this ROM space, as shown in Fig. 6, it can be seen that their errors are

more than 10 times larger than the errors in snapshots. In this case, the controlled state

converges to a different desired state.

There are several ways to overcome the above problem. In this article, the basis is

derived from the extended snapshot set fW (γ) = W (γ) ∪ Z where Z is the snapshot set of

the desired state. In our opinion, this method is the simplest method. In this case, the

projection errors are all about the same as shown in Fig. 7.
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Figure 5: Controlled (left) and target (right) flows (left pair of columns) and temperatures (right pair
of columns), t = 0.0, 0.009, 0.015, 0.02, 0.08, 0.2; γ= 10.
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The eight-dimensional POD basis functions (velocity and temperature) are displayed

in Fig. 8. We retained eight basis functions for each velocity and temperature fields —

i.e. Ku = Kθ = 8, as they captured more than 99.999997% of the energy for all control

numbers γ = [10,20,30]. In the case of temperature, more energy is concentrated in the

first eight bases than in the case of velocity. We consider here, a small-dimensional POD

basis can capture most of the information contained in the snapshot set.

0.00 0.05 0.10 0.15 0.20

10−6

10−5

Snapshots

Desired state, γ = 10

Desired state, γ = 20

Desired state, γ = 30

0.00 0.05 0.10 0.15 0.20

10−7

10−6

Figure 6: Least-squares projection error. Left: Velocity. Right: Temperature.

0.00 0.05 0.10 0.15 0.20

10−6

10−5

γ = 10 γ = 20 γ = 30, Velocity

0.00 0.05 0.10 0.15 0.20

10−6

10−5

0.00 0.05 0.10 0.15 0.20

10−7

10−6

γ = 10 γ = 20 γ = 30, Temperature

0.00 0.05 0.10 0.15 0.20

10−7

10−6

Figure 7: Least-squares projection error. Top: Velocity. Bottom: Temperature. Left: Snapshot set to
it own ROM space. Right: Desired state to each ROM space.
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Now, given the desired state (U ,Θ), we use K-dimensional system of of nonlinear or-

dinary differential equations (3.6) to determine reduced-order solutions of the Boussinesq

system. Approximations of solutions q
(n)

k
of the system of ordinary differential equation

(3.6) are determined using a fourth order Runge-Kutta method.

To quantify the performance of different frameworks, we defined the root mean squared

error (RMSE) between the FOM solution and the solutions computed with different ROM

frameworks. The RMSE is defined as

RMSE(tn) =

√√√√ 1

N

N∑

i=1

�
(u ,θ)FOM(x i, tn)− (u,θ)ROM(x i, tn)

�2
,

where N represents the spatial resolution — i.e. the number of the interior finite element

node.

Figure 8: The POD reduced basis of cardinality 8 for velocity and temperature (basis 1,2,3,4 from the
left to the right (top) and basis 5,6,7,8 from the left to the right (bottom) in each two rows.
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Fig. 9 shows the RMSE(t) over time for three cases γ = [10,20,30]. The LS projection

error is

EW (γ)⊥(t, x ,γ) = uFOM(t, x ,γ)− uProj(t, x ,γ)

and GP-ROM error is

E ROM(t, x ,γ) = uFOM(t, x ,γ)− uROM(t, x ,γ).

We calculate the LS projection modal coefficients by orthogonally projecting the state vari-

ables onto the reduced spaces. We will use the differences between RSME of LS projection

and that of GP-ROM in the LSTM-ROM study, which will be studied in the next subsection.
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0.00 0.05 0.10 0.15 0.20
t

10−7

10−6

10−5

10−4

10−3

R
M
S
E

Figure 9: Upper 3 lines: RMSEs of Galerkin ROM. Lower 3 lines: LS projection. Top: Velocity. Bottom:
Temperature.

5.3. LSTM-ROM

In this subsection, we test GP-LSTM closure model for the out-of-sample condition γ=

40. For testing our GP-LSTM closure model, we have generated three cases in different

values of parameters such that γ = [10,20,30].

It was carried out according to the method suggested in Section 4.2. A supervised

learning framework is applied to model the correction term C with information obtained

from FOM and projection data (see Fig. 10). We train our LSTM neural network to learn the

mapping from GP modal coefficients to the correction term. Since GP modal coefficients

are used as input features to the LSTM network, the parameter γ governing the system’s

behavior is taken implicitly into account. We train the LSTM network with two hidden

layers and 80 cells. The required settings can be seen in Table 1.



POD and Deep Learning for a Feedback Control Problem 19

0.00 0.05 0.10 0.15 0.20
t

0.0

0.5

r 1
(t
)

γ = 10 γ = 20 γ = 30

0.00 0.05 0.10 0.15 0.20
t

0.00

0.25

r 2
(t
)

0.00 0.05 0.10 0.15 0.20
t

−0.05

0.00

r 3
(t
)

0.00 0.05 0.10 0.15 0.20
t

−0.2

0.0

r 4
(t
)

0.00 0.05 0.10 0.15 0.20
t

−0.5

0.0

r 5
(t
)

0.00 0.05 0.10 0.15 0.20
t

0.0

0.2

r 6
(t
)

0.00 0.05 0.10 0.15 0.20
t

0.0

0.5

r 7
(t
)

0.00 0.05 0.10 0.15 0.20
t

0.0

2.5

r 8
(t
)

0.00 0.05 0.10 0.15 0.20
t

−0.025

0.000

0.025

r 9
(t
)

0.00 0.05 0.10 0.15 0.20
t

0.00

0.05

r 1
0
(t
)

0.00 0.05 0.10 0.15 0.20
t

0.00

0.02

r 1
1
(t
)

0.00 0.05 0.10 0.15 0.20
t

−0.025

0.000

r 1
2
(t
)

0.00 0.05 0.10 0.15 0.20
t

−0.025

0.000

0.025

r 1
3
(t
)

0.00 0.05 0.10 0.15 0.20
t

0.00

0.02

r 1
4
(t
)

0.00 0.05 0.10 0.15 0.20
t

0.00

0.05

r 1
5
(t
)

0.00 0.05 0.10 0.15 0.20
t

0.000

0.025

r 1
6
(t
)

Figure 10: Difference between the coefficients of LS projection and coefficients of ROM solutions
rk(t) = αk(t)− qk(t).
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Table 1: A list of hyperparameters utilized to train the LSTM network for numerical experiments.

Variables Hyperparameters

Number of hidden layers 2

Number of neurons in each hidden layer 80

Number of lookbacks 5

Batch size 32

Epochs 800

Activation functions in the LSTM layers tanh

Validation data set 20%

Loss function MSE

Optimizer ADAM

Once the model is trained, we could correct the GP modal coefficients with LSTM-

based correction to approximate true projection modal coefficients. We give the numerical

procedure as follows:

1. Data generation: For γ = 10,20,30 to use in learning algorithm and γ = 40 to use

a test.

2. Basis construction: For γ= 10,20,30.

3. The velocity and temperature modal coefficients q
(n)

k
of Galerkin projection reduced

order modeling calculation for γ = 10,20,30 using each corresponding basis.

4. LSTM training using C
(n+1)

k
and q

(n+1)

k
. A summary of the adopted hyper-parameters

is presented in Table 1. The training and validation loss during the learning procedure

are in Fig. 11.

5. Prediction for γ = 40 using the basis which is obtained from the snapshot sets with

γ = 30.

0 100 200 300 400 500 600 700 800

10−5

10−4

10−3

10−2

10−1 Training loss

Validation loss

Figure 11: Training and validation loss.
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Figure 12: RMSE of ROMs predicted by LS projection, GP-ROM and GP-LSTM for γ = 40 using the
basis of γ= 30, 0.005≤ t ≤ 0.2. Left for u and right for θ .

6. Reconstruction and compare with GP-ROM, LS projection and GP-LSTM ROM (see

Fig. 12).

In step 5, interpolation techniques such as Grassman manifold interpolation [2, 3, 25], or

the discrete empirical interpolation method, (DEIM) are typically applied to postprocess

the results. For this work, however, such interpolations were not applied, so as to focus on

the effects obtained from the Deep Learning technique.

Finally, we report the online computing time for our numerical experiments. We show

the computational time as well as the RMSE of reconstructed fields in average for the test

cases at γ = 40 in Table 2. All calculations were performed on an iMac 3.6Ghz 10 Core.

We observe that computing time of GP-LSTM is about twice that of GP-ROM and the error

of GP-LSTM is much smaller (about 1/50 for the velocity field and about 1/150 for the

temperature field) than that of GP-ROM. From Fig. 12, it can be seen that the results using

GP-LSTM have significantly higher accuracy than the results using GP-ROM. If we use as

much data as and use interpolations like in other papers, for example [2, 25, 26], one can

reduce the error even more. However, in this article, LSTM is applied in the simplest way, to

see the possibility of applying the deep learning technique to the optimal control problem

or UQ problem of fluid flows.

Table 2: CPU time (in second) comparison for the different ROM frameworks investigated in this study
and the average of RMSE.

Framework Times RMSE (Average)

Velocity Temperature

FOM 12.14 0 0

LS-Projection 3.22154634e-06 3.63202367e-07

GP-ROM 0.0485 1.93027855e-02 7.78547558e-03

GP-LSTM 0.0837 3.81106095e-04 4.72451491e-05
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6. Concluding Remarks

In this study, a simple feedback rule is considered in order to reduce the amount of

computation. It has been shown that our feedback law works very well. It is believed that

mathematical proof will be possible without much difficulty. For real-time computation,

a numerical experiment was performed by adopting a GP-ROM. In order to increase the GP-

ROM’s accuracy, the deep learning method, especially the LSTM method, which has been

actively developed recently, was studied and applied. The ROM using deep learning such

as LSTM performed in this study is considered to be worth continuing research. However,

it is difficult to study systematically because the mathematical theory is not supported. We

intend to apply GP-LSTM and GP-ResNet methods to the next studies, the optimal control

problems and the uncertainty quantification problems of fluid flows.

Acknowledgments

This research was supported by NRF-2019R1F1A1050231 and the National Science

Foundation of China (11961073).

References

[1] R. Adams, Sobolev Spaces, Academic Press (1975).

[2] S. Ahmed, O. San, A. Rasheed and T. Iliescu, A long short-term memory embedding for hybrid

uplifted reduced order models, Physica D 409, (2020).

[3] D. Amsallem, Interpolation on Manifolds of CFD-Based Fluid and Finite Element-Based Structural

Reduced-Order Models for On-Line Aeroelastic Predictions, Ph.D. Thesis, Stanford University

(2010).

[4] R. Archibald, F. Bao, J. Yong and T. Zhou, An efficient numerical algorithm for solving data

drivan feedback control problems, J. Sci. Comput. 85(2), 58 (2020).

[5] P. Benner, S. Gugercin and K. Willcox, A survey of projection-based model reduction methods

for parametric dynamical systems, SIAM Review 57(4), 483–531 (2015).

[6] M. Benosman, J. Borggaard, O. San and B. Kramer, Learning-based robust stabilization for

reduced-order models of 2D and 3D Boussinesq equations, Appl. Math. Model. 49, 162–181

(2017).

[7] G. Berkooz, P. Holmes and J.L. Lumley, The proper orthogonal decomposition in the analysis

of turbulent flows, Annu. Rev. Fluid Mech. 25, 539–575 (1993).

[8] S. Brunton, B. Noack and P. Koumoutsakos, Machine learning for fluid mechanics, Annu. Rev.

Fluid Mech. 52, 477–508 (2020).

[9] J. Burkardt, M. Gunzburger and H.-C. Lee, Centroidal voronoi tessellation-based reduced-order

modeling of complex systems, SIAM J. Sci. Comput. 28, 459–484 (2006).

[10] J. Burkardt, M. Gunzburger and H.-C. Lee, POD and CVT-based reduced-order modeling of

Navier-Stokes flows, Comput. Methods Appl. Mech. Engrg. 196, 337–355 (2006).

[11] M.D. Chekroun, H. Liu and J.C. McWilliams, Variational approach to closure of nonlinear dy-

namical systems: Autonomous case, J. Stat. Phys. 1–88 (2019).

[12] J.H. Faghmous, A. Banerjeeand, S. Shekharand, M. Steinbach, V. Kumar, A.R. Ganguly, and

N. Samatova, Theory-guided data science for climate change, Computer 47, 74–78 (2014).



POD and Deep Learning for a Feedback Control Problem 23

[13] V. Girault and P.A. Raviart, Finite element method for Navier-Stokes equations: Theory and Al-

gorithms, Springer (1986).

[14] M.D. Gunzberger and S. Manservisi, Analysis and approximation for linear feedback control

for tracking the velocity in Navier-Stokes flows, Comput. Methods Appl. Mech. Engrg. 189,

803–823 (2000).

[15] J. Harlim, S.W. Jiang, S. Liang and H. Yang, Machine learning for prediction with missing

dynamics, http://arxiv.org/abs/1910.05861 (2019).

[16] F. Hecht, New development in FreeFem++, J. Numer. Math. 20, 251–265 (2012).

[17] P. Holmes, J.L. Lumley and G. Berkooz, Turbulence, Coherent Structures, Dynamical Systems

and Symmetry, Cambridge (1996).

[18] A. Karpatne, G. Atluri, J.H. Faghmous, M. Steinbach, A. Banerjee, A. Ganguly, S. Shekhar,

N. Samatova and V. Kumar, Theory-guided data science: A new paradigm for scientific discovery

from data, IEEE Trans. Knowl. Data Eng. 29, 2318–2331 (2017).

[19] H.-C. Lee, Efficient computations for linear feedback control problems for target velocity match-

ing of Navier-Stokes flows via POD and LSTM-ROM, ERA, 29(3), 2533–2552 (2021).

[20] H.-C. Lee and Y. Choi, Analysis and approximation of linear feedback control problems for the

Boussinesq equations, CAMWA 51, 829–848 (2006).

[21] H.-C. Lee and B.C. Shin, Dynamics for linear feedback controlled two-dimensional Bénard equa-

tions with distributed controls, Appl. Math. Optim. 44(2), 163–175 (2001).

[22] H.-C. Lee and B.C. Shin, Piecewise optimal distributed controls for 2D Boussinesq equations,

Math. Meth. Appl. Sci. 23, 227–254 (2000) .

[23] A. Majda, Strategies for reduced-order models for predicting the statistical responses and uncer-

tainty quantification in complex turbulent dynamical systems, SIAM Review, 60(3), 491–549

(2015).

[24] C. Moua, B.L. Koca, O. Sanb, L.G. Rebholzc and T. Iliescu, Data-driven variational multiscale

reduced order models, Comput. Methods Appl. Mech. Engrg. 373 (2021).

[25] S. Pawar, S. Ahmed, O. San and A. Rasheed, An evolve-then-correct reduced order model for

hidden fluid dynamics, Mathematics, 8(4), 570 (2020).

[26] S. Pawar, S. Ahmed, O. San and A. Rasheed, Data-driven recovery of hidden physics in reduced

order modeling of fluid flows, Physics of Fluids 32(3), 036602 (2020).

[27] M. Rahman, S. Pawar, O. San, A. Rasheed and T. Iliescu, A non-intrusive reduced order modeling

framework for quasi-geostrophic turbulence, Phys. Rev. E 100, 053306 (2019).

[28] L. Sirovich, Turbulence and the dynamics of coherent structures. Part I: Coherent structures. Part

II: Symmetries and transformations. Part III: Dynamics and scaling, Quart. Appl. Math. 45(3),

561–590 (1987).

[29] M. Strazzullo, Z. Zainib, F. Ballarin and G. Rozza, Reduced order methods for parametrized non-

linear and time dependent optimal flow control problems, towards applications in biomedical and

environmental sciences, arXivmath.NA/1912.07886

[30] K. Xu, B. Shi and S. Yin, Deep Learning for Partial Differential Equations, Stanford University

(2018).


