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Abstract. In this article, an α-th (0 < α < 1) order time-fractional reaction-diffusion

equation with variably diffusion coefficient and initial weak singularity is consid-
ered. Combined with the fast L1 time-stepping method on graded temporal meshes,

we develop and analyze a fourth-order compact block-centered finite difference

(BCFD) method. By utilizing the discrete complementary convolution kernels and
the α-robust fractional Grönwall inequality, we rigorously prove the α-robust un-

conditional stability of the developed fourth-order compact BCFD method whether

for positive or negative reaction terms. Optimal sharp error estimates for both the
primal variable and its flux are simultaneously derived and carefully analyzed. Fi-

nally, numerical examples are given to validate the efficiency and accuracy of the
developed method.
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1. Introduction

Fractional differential equations have been widely used to describe challenging phe-

nomena with long range time memory and spatial interactions due to their non-local

nature [13,30,32,45,53,57], and have drawn increasing attentions over the past sev-

eral decades. In particular, time-fractional partial differential equations are typically
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used to model anomalous diffusion phenomenon. However, due to the nonlocal na-

ture of fractional integral or differential operators, the analytical solutions are usually

not available for such equations, and thus numerical modeling have been an efficient

approach for studying the fractional differential models. So far, the time-fractional

differential equations have been widely studied [6,19,21,27,32,33,43,50,54].

In this paper, we are interested in the following time-fractional reaction-diffusion

problem:

{

C
0Dα

t p(x, t)− ∂x
(

a(x)∂xp(x, t)
)

+ cp(x, t) = f(x, t), (x, t) ∈ I × (0, Tf ],

p(x, 0) = po(x), x ∈ Ī
(1.1)

under periodic boundary conditions, where I := (xl, xr) ⊂ R and Ī := I ∪ {xl, xr}.

Moreover, the time-fractional derivative C
0Dα

t p in (1.1) is given in the Caputo sense [32]

C
0Dα

t p(x, t) :=

∫ t

0
ω1−α(t− s)∂sp(x, s)ds, 0 < α < 1,

where the kernel function ωβ(t) := tβ−1/Γ(β), t > 0.

Throughout the paper, we suppose f and po are two given sufficiently smooth source

and initial functions and the following assumptions hold [41,42]:

Assumption 1.1. Problem (1.1) has a unique solution p(x, t), and there is a positive

constant C0 independent of α such that

‖p(·, t)‖H6 ≤ C0, (1.2)

and

‖∂tp(·, t)‖H5 ≤ C0(1 + tα−1), ‖∂ttp(·, t)‖H1 ≤ C0(1 + tα−2). (1.3)

Assumption 1.2. Suppose that a(x) ∈ C1(Ī) is a periodic function, and there exist

positive constants a∗ ≤ a∗ such that a∗ ≤ a(x) ≤ a∗. Besides, c is a constant that maybe

positive or negative.

As pointed above, various methods have been presented to solve the time-fractional

reaction-diffusion equation (1.1), see also [35, 56]. However, the papers mentioned

above only considered the case where c is non-negative, and most papers have ig-

nored the possible presence of an initial layer in the typical solution near the initial

time t = 0, and have presented convergence analysis under the unrealistic assumption

p(x, ·) ∈ C2[0, Tf ] or even high-order assumption, e.g. C3[0, Tf ]. It is pointed and

proved in [38, 42] that the typical solution of the α-th order time-fractional diffusion

equation has weak singularity at t = 0, e.g. ∂tp ∼ tα−1. Thus, the forementioned

theoretical analysis based on the assumption that the solution is smooth enough is not

appropriate. To compensate for the weak singularity, an efficient strategy is to employ

the graded meshes [4, 20, 44, 49], that is concentrating more mesh points around the

(weak) singular points to catch the rapid variation of the solution and use large stepsize
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while the solution changes slowly. Rencently, the graded mesh strategy is also utilized

to solve the time-fractional models. For example, a time-stepping discontinuous Petrov-

Galerkin method on graded meshes was proposed and analyzed for time-fractional

subdiffusion equations in [31]. Stynes and O’Riordan [42] considered the L1 method

for the time-fractional diffusion equation, and they strictly proved the maximum error

of the numerical solution is of order N
−min{2−α,rα}
t , where Nt is the total number of

temporal grids. Huang et al. [15] employed Alikhanov’s L2-1σ scheme on the graded

meshes for the time-fractional Allen-Cahn equation, and furthermore they derived cor-

responding sharp L∞(H1) error estimate. Both theoretical analysis and numerical ex-

periments show that the usage of graded mesh can effectively recover the convergence

order, e.g., the L1 scheme can be recovered to order 2−α. Worthy of a special mention

is that Liao et al. [24–26,36] put forward a novel analysis framework for time-fractional

models discretized on general temporal meshes, in which discrete complementary con-

volution (DCC) kernels technique combined with a novel developed discrete fractional

Grönwall inequality and a new concept named global consistency analysis are used.

The DCC kernels {P (m)
m−j} are defined via the discrete convolution (DC) kernels {d(m)

m−j}
arsing from approximation of the Caputo derivative, i.e.,

∑m
k=1 d

(m)
m−k∇τv

k ≈ C
0Dα

t v
m,

and they satisfy the relation
∑m

j=k P
(m)
m−jd

(j)
j−k ≡ 1 and possess good properties that are

helpful for numerical analysis. In this paper, we shall employ Liao’s approach for anal-

ysis of the developed high-order finite difference approximation of model (1.1), where

the reaction term can be either positive or negative.

It is well known that when α → 1−, the α-th order Caputo derivative C
0Dα

t p in (1.1)

will degenerate to the first-order derivative ∂tp, and correspondingly model (1.1) is

reduced to the classical reaction-diffusion model

∂tp− ∂x
(

a(x)∂xp
)

+ cp = f(x, t) in I × (0, Tf ]. (1.4)

Thus, it is somewhat reasonable to demand that the numerical analysis of any reliable

numerical methods for solving (1.1) should produce error bounds that remain valid

as α → 1−. Unfortunately, as pointed out and analyzed in [5] that the error analysis,

see, [42, Lemma 3.2] and [24, Lemma 3.3], contain a factor 1− α in its denominator,

so the error bounds will blow up as α → 1−. Recently, Chen et al. [5] proposed

a robust error bound that do not blow up as α → 1−, and thus can involve the error

estimate for model (1.4). Recently, this technique was also applied to time-fractional

biharmonic equation [14] and time-fractional Allen-Cahn equation [15]. However, to

the best of our knowledge no robust and sharp analysis are presented for high-order

finite difference approximation of model (1.1) even in one space dimension.

Due to the nonlocality of the Caputo fractional derivative in the model (1.1), tra-

ditional discretization approaches [1, 32, 43] unavoidably lead to a large amount of

storage and CPU time consumption. To reduce the computational cost, various fast

algorithms have been developed to solve the time-fractional models. For example, an

approximate inversion method [29] and a divide-and-conquer strategy [18] are pro-

posed for calculating the block lower triangular Toeplitz-like with tri-diagonal blocks
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system, which arising from the discretization of the time-fractional partial differential

equation. Fu et al. [9] proposed a reduced-order model based on the proper orthogonal

decomposition and the discrete empirical interpolation method for efficiently simulat-

ing the time-fractional diffusion equations. In [8, 47, 48], efficient parareal algorithms

are respectively presented to reduce the computational cost due to the historical effect

of the fractional operator. Specifically, Zhang et al. [16] present a fast L1 method for

the evaluation of the Caputo derivative based on an efficient sum-of-exponentials (SOE)

approximation for the kernel t−1−α on the interval [τ̂ , Tf ] with a uniform absolute er-

ror ǫ. Recently, the SOE technology combined with other spatial discretization methods

is also adopted for modeling of various time-fractional models [11,12,26,28,55]. How-

ever, robust error analysis about the fast numerical schemes are still lack.

In this paper, we are concerned with analysis and implementation of a fast high-

order compact difference method for model (1.1). In fact, compact difference oper-

ators which use few mesh points that can still gain high-order spatial accuracy, have

been focused on promoting algorithm accuracy for the modeling of fractional differ-

ential equations [7, 10, 46]. But, the theoretical analysis there do not consider the

inherent weak singularity of the time-fractional model. In addition, in practical ap-

plications, people are concerned not only with the primal unknown function itself,

but also with its gradient or flux. Block-centered finite difference (BCFD) method,

sometimes called cell-centered finite difference method [2], which is also thought as

the lowest-order Raviart-Thomas mixed element method [34] with proper quadrature

formula, is viewed as an effective mean for simultaneously approximating the primal

variable and its flux to a same order of accuracy without any accuracy lost. Besides,

the BCFD method can guarantee the mass conservation and result in a symmetric pos-

itive definite system, compared with a saddle-point system generated by the classical

mixed element method [34]. Therefore, the BCFD method is more efficient and widely

used for modeling of flow model [37, 58], convection-diffusion model [52], and even

time-fractional model [17, 22, 23, 51]. Recently, Shi et al. [40] proposed a compact

BCFD method for the elliptic and parabolic problems, which further improves the spa-

tial accuracy from second-order to fourth-order. However, the analysis in [40] cannot

be directly applied to the time-fractional reaction-diffusion equation (1.1), and up to

now, there are indeed no work on high-order BCFD method for model (1.1), and er-

ror analysis of most available second-order BCFD methods [22,23,51] are based upon

smoothness assumption of the solution.

In this work, we shall propose a compact BCFD scheme combined with fast SOE-

based L1 time-stepping formula for model (1.1), where graded mesh is employed to

compensate for the possible temporal accuracy lost caused by the singularity of the

solution at t = 0. By defining new weighted norms ‖ · ‖∗,M and ‖ · ‖∗,T , which are

equivalent to norms ‖·‖M and ‖·‖T , see Lemma 3.2, a rigorous prior estimate is proved

no matter the reaction is positive or not (see Theorem 3.1). The main contributions of

this paper can be summarized as follows:

• By introducing an auxiliary flux variable, a SOE-based fast fourth-order com-

pact BCFD method is developed for the time-fractional reaction-diffusion equa-
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tion with variably diffusion coefficient, which significantly reduces the memory

requirement and computational cost.

• By introducing DCC kernals (see Lemma 2.2) and using an α-robust fractional

Grönwall inequality (see Lemma 2.3), we bound robustly the local truncation

errors in discrete convolution form, see Lemmas 3.5 and 3.6.

• α-robust stability and sharp error estimates for both primal p and flux u are de-

rived simultaneously. In particular, the analysis for the flux is skillful, in which the

fractional order operator has to be applied to the error equation of u to obtain

a new error equation, and then by choosing special test functions, an α-robust

stability and optimal error estimates are obtained.

The outline of the paper is as follows. In Section 2, a fast fourth-order compact

BCFD method is proposed for the time-fractional model (1.1), and some preliminary

lemmas are given. In Section 3, an α-robust unconditional stability and sharp error

estimates for both primal variable and its flux are rigorously proved and carefully dis-

cussed. In Section 4, some numerical examples are carried out to validate the theoreti-

cal analysis. Finally, conclusions are given in the last section. Throughout the paper, we

use C with or without subscript to represent a generalα-robust positive constant, which

is independent of the mesh stepsize and can be different under different circumstances.

2. A fast L1-compact BCFD method

In this section, we aim to develop a fast fourth-order compact BCFD method for the

model problem (1.1) with periodic boundary conditions.

Let u(x, t) = −a(x)∂xp(x, t), then (1.1) can be transformed into the following equiv-

alent form:















C
0Dα

t p(x, t) + ∂xu(x, t) + cp(x, t) = f(x, t) in I × (0, Tf ],

∂xp(x, t) + a−1(x)u(x, t) = 0 in I × (0, Tf ],

p(x, 0) = po(x) in Ī .

(2.1)

Subsequently, we shall present numerical approximations for (2.1) based on fast L1
discretization on graded temporal meshes and compact BCFD discretization on uniform

staggered spatial meshes.

2.1. Fast L1 temporal discretization

Let Nt be a positive integer and r ≥ 1, a user-defined mesh grading parameter. We

set tm := (m/Nt)
rTf , m = 0, 1, . . . , Nt, and τm := tm − tm−1, τ := max1≤m≤Nt τm. To

develop a fast L1 formula, we first give the following SOE approximation.
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Lemma 2.1 ([16]). For a given α ∈ (0, 1), an absolute tolerance error ǫ, a cut-off time

restriction τ̂ , and a final time Tf , there are one positive integer No, positive quadrature

points {si | i = 1, 2, . . . , No} and corresponding positive weights {ωi | i = 1, 2, . . . , No}
such that

∣

∣

∣

∣

∣

ω1−α(t)−
No
∑

i=1

ωie
−sit

∣

∣

∣

∣

∣

≤ ǫ, t ∈ [τ̂ , Tf ],

where the number of quadrature nodes satisfies

No = O
(

log
1

ǫ

(

log log
1

ǫ
+ log

Tf

τ̂

)

+ log
1

τ̂

(

log log
1

ǫ
+ log

1

τ̂

))

.

Based on Lemma 2.1, the fast version L1 approximation of the Caputo fractional

derivative on the graded temporal meshes is drawn as a combination of history part

and local part [16,26]

F δαt p
m(x) =

m−1
∑

k=1

[

1

τk

∫ tk

tk−1

No
∑

i=1

wie
−si(tm−s)ds

]

∇τp
k(x)

+

[

1

τm

∫ tm

tm−1

ω1−α(tm − s)ds

]

∇τp
m(x)

=:
m
∑

k=1

d
(m)
m−k∇τp

k(x), (2.2)

where the difference operator ∇τp
k(x) := pk(x)− pk−1(x) and the DC kernels {d(m)

m−k}
are defined on graded temporal meshes as follows:

d
(m)
m−k =























1

τk

∫ tk

tk−1

No
∑

i=1

ωie
−si(tm−s)ds, k = 1, 2, . . . ,m− 1,

1

τm

∫ tm

tm−1

ω1−α(tm − s)ds, k = m.

(2.3)

Remark 2.1. Note that the formula (2.2) is only used for the subsequent numerical

analysis. In practical computation, we denote the history part in (2.2) by

Sm−1
i :=

m−1
∑

k=1

[

1

τk

∫ tk

tk−1

e−si(tm−s)ds

]

∇τp
k.

Then, the fast version L1 formula can be computed via

F δαt p
m =

No
∑

i=1

wiSm−1
i + d

(m)
0 ∇τp

m, (2.4)
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where a direct calculus shows that S0
i = 0 and Sm−1

i (2 ≤ m ≤ Nt) satisfies the

following recurrence relation:

Sm−1
i =

m−2
∑

k=1

[

1

τk

∫ tk

tk−1

e−si(tm−s)ds

]

∇τp
k +

[

1

τm−1

∫ tm−1

tm−2

e−si(tm−s)ds

]

∇τp
m−1

= e−siτmSm−2
i +

e−siτm − e−si(tm−tm−2)

τm−1si
∇τp

m−1. (2.5)

Thus, compared with the classical L1 formula, the fast version L1 formula (2.4)-(2.5)

has reduced the memory requirement from O(Nt) to O(No) and computational cost

from O(N2
t ) to O(NtNo).

If the tolerance error ǫ of the SOE approximation satisfies ǫ ≤ min{ω1−α(Tf )/3,

αω2−α(Tf )}, then the DC kernels {d(m)
m−k} defined by (2.3) are positive and satisfy [26]

d
(m)
0 > d

(m)
1 > · · · > d

(m)
m−1 > 0. (2.6)

Moreover, with these DC kernels one can define a family of DCC kernels (cf. [25]) such

that
m
∑

j=k

P
(m)
m−jd

(j)
j−k = 1, 1 ≤ k ≤ m ≤ Nt. (2.7)

The DCC kernels defined in (2.7) shall play an important role in the stability and con-

vergence analysis of the presented numerical methods. We state the following key

lemma.

Lemma 2.2 ([26]). The DCC kernels {P (m)
m−j} are well defined with

P
(m)
m−k =

1

d
(k)
0











1, k = m,
m
∑

j=k+1

(

d
(j)
j−k−1 − d

(j)
j−k

)

P
(m)
m−j , 1 ≤ k ≤ m− 1,

and

0 < P
(m)
m−k ≤ Γ(2− α)ταk , 1 ≤ k ≤ m ≤ Nt.

Furthermore, if ǫ ≤ min{ω1−α(Tf )/3, αω2−α(Tf )}, the following estimates hold for m =
1, 2, . . . , Nt:

m
∑

k=1

P
(m)
m−k ≤ 3tαm

2Γ(1 + α)
,

2µ

3

m−1
∑

k=1

P
(m)
m−kEα(µt

α
k ) ≤ Eα(µt

α
m)− 1,

where µ > 0 is a constant, and Eα(z) :=
∑∞

k=0 z
k/Γ(1+kα) denotes the single-parameter

Mittag-Leffler function.
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An α-robust discrete fractional Grönwall inequality based on the fast L1 formula is

listed in the following lemma.

Lemma 2.3. Let {λs} be nonnegative constants with 0 <
∑m−1

s=0 λs ≤ λ for m ≥ 1, where

λ is some positive constant independent of m. Suppose ǫ ≤ min{ω1−α(Tf )/3, αω2−α(Tf )}
and the nonnegative grid functions {vm|m ≥ 0} satisfy

F δαt (v
m)2 =

m
∑

k=1

d
(m)
m−k∇τ (v

k)2 ≤
m
∑

l=1

λm−l (v
l)2 + vmξm + (ηm)2, m ≥ 1,

where {ξm, ηm | m ≥ 1} are bounded nonnegative sequences. If the maximum time

stepsize fulfills τ ≤ 1/ α
√

3Γ(2 − α)λ, then

vm ≤ 2Eα(3λt
α
m)



v0 + max
1≤k≤m

k
∑

j=1

P
(k)
k−j(ξ

j + ηj) + max
1≤k≤m

ηk



 , 1 ≤ m ≤ Nt.

Proof. Note that the DC kernels {d(m)
m−k} defined in (2.3) are positive and monotone

under condition ǫ ≤ min{ω1−α(Tf )/3, αω2−α(Tf )}, please refer to (2.6). Following the

same line of proof of [15, Lemma 4.1], this conclusion can be derived immediately.

Remark 2.2. If the given {λl}Nt−1
l=0 are non-positive, it is shown in [14, Lemma 4.2]

that the conclusion of Lemma 2.3 holds in a much simpler form

vm ≤ v0 +

m
∑

j=1

P
(m)
m−j(ξ

j + ηj) + max
1≤k≤m

ηk, 1 ≤ m ≤ Nt

without any restrictions on the time stepsize.

Now, a temporal semi-discrete approximation of model (2.1) is proposed as

F δαt p
m + umx + cpm = fm +Rm

t [p], pmx + a−1um = 0 in I, (2.8)

where Rm
t [p](x) := F δαt p

m(x)− C
0Dα

t p
m(x) denotes the local truncation error of the fast

L1 formula (2.2), and a robust (i.e., when α → 1−, the estimate shall not blow up)

global consistency error is stated below.

Lemma 2.4. If p(x, t) satisfies the condition (1.3) in Assumption 1.1, and moreover,

ǫ ≤ min{ω1−α(Tf )/3, αω2−α(Tf )} and r ≤ 2(2 − α)/α, Nt ≥ 8, it holds that

m
∑

k=1

P
(m)
m−k

∣

∣Rk
t [p]
∣

∣ ≤ C

(

erΓ(1 + γ − α)

Γ(1 + γ)

(

1 +
3ǫ

2Γ(1 + α)

)

(

Tα
f + T 2α

f

)

×
(

tm
Tf

)γ

N
−min{rα,2−α}
t + ǫ

3tαm(tm−1 + tαm−1/α)

2Γ(1 + α)

)

(2.9)

for 1 ≤ m ≤ Nt, where γ = 1/ lnNt + α−min{α, (2 − α)/r}.
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Proof. For simplicity, below we denote Rk
t [p] as Rk

t whenever no confusion caused.

By triangle inequality, we get

m
∑

k=1

P
(m)
m−k

∣

∣Rk
t

∣

∣ ≤
m
∑

k=1

P
(m)
m−k

∣

∣δαt p
k − C

0Dα
t p

k
∣

∣+
m
∑

k=2

P
(m)
m−k

∣

∣δαt p
k − F δαt p

k
∣

∣, (2.10)

where δαt denote classical L1 discrete fractional operator [27,43], that is

δαt p
m(x) =

m
∑

k=1

[

1

τk

∫ tk

tk−1

ω1−α(tm − s)ds

]

∇τp
k(x) =:

m
∑

k=1

d̂
(m)
m−k ∇τp

k(x). (2.11)

It follows from [42, Remark 5.5] that

∣

∣δαt p
k − C

0Dα
t p

k
∣

∣ ≤ Ck−α∗ ≤ Ckr/lnNt−α∗

with α∗ := min{rα, 2 − α}, and thus we have r/lnNt − α∗ = r(γ − α) and

m
∑

k=1

P
(m)
m−k

∣

∣δαt p
k − C

0Dα
t p

k
∣

∣ ≤ CTα−γ
f N

r
lnNt

−α∗

t

m
∑

k=1

P
(m)
m−kt

γ−α
k ,

which, together with [5, Lemma 5.3], gives

m
∑

k=1

P
(m)
m−k

∣

∣δαt p
k − C

0Dα
t p

k
∣

∣

≤ C
Γ(1 + γ − α)

Γ(1 + γ)
Tα−γ
f N

r
lnNt

−α∗

t

m
∑

k=1

P
(m)
m−k

k
∑

j=1

d̂
(k)
k−j [(tj)

γ − (tj−1)
γ ]

≤ C
Γ(1 + γ − α)

Γ(1 + γ)
Tα−γ
f N

r
lnNt

−α∗

t

m
∑

k=1

P
(m)
m−k

k
∑

j=1

[

d
(k)
k−j +

∣

∣d̂
(k)
k−j − d

(k)
k−j

∣

∣

]

[(tj)
γ − (tj−1)

γ ] .

By using Lemma 2.1 and exchanging the order of summation, the above inequality

leads to

m
∑

k=1

P
(m)
m−k

∣

∣δαt p
k − C

0Dα
t p

k
∣

∣

≤ C
Γ(1 + γ − α)

Γ(1 + γ)
Tα−γ
f N

r
lnNt

−α∗

t





m
∑

j=1

[(tj)
γ − (tj−1)

γ ] + ǫ

m
∑

k=1

P
(m)
m−k(tk)

γ





≤ C
Γ(1 + γ − α)

Γ(1 + γ)

(

1 +
3ǫ

2Γ(1 + α)

)

(

Tα
f + T 2α

f

)

(

tm
Tf

)γ

N
r

lnNt
−α∗

t ,

where Lemma 2.2 is used in the last inequality. Furthermore, due to 1 ≤ N
r/lnNt

t ≤ er,
we derive
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m
∑

k=1

P
(m)
m−k

∣

∣δαt p
k − C

0Dα
t p

k
∣

∣

≤ C
erΓ(1 + γ − α)

Γ(1 + γ)

(

1 +
3ǫ

2γ(1 + α)

)

(

Tα
f + T 2α

f

)

(

tm
Tf

)γ

N−α∗

t . (2.12)

Moreover, by (1.3) in Assumption 1.1, (2.11) and Lemma 2.2, the second term on the

right-hand side of (2.10) can be bounded by

m
∑

k=2

P
(m)
m−k

∣

∣δαt p
k − F δαt p

k
∣

∣

≤
m
∑

k=2

P
(m)
m−k

k
∑

j=1

|∇τp
j|
[

1

τj

∫ tj

tj−1

∣

∣

∣

∣

ω1−α(tm − s)−α −
No
∑

i=1

ωie
−si(tm−s)

∣

∣

∣

∣

ds

]

≤ Cǫ
m
∑

k=2

P
(m)
m−k

∫ tk−1

t0

|p′(s)|ds ≤ Cǫ
3tαm(tm−1 + tαm−1/α)

2Γ(1 + α)
. (2.13)

Therefore, based on (2.12)-(2.13), we can obtain (2.9).

2.2. Compact BCFD method

Let N be a positive integer. Define two sets of staggered spatial grids by

Πh : x−1/2 = xl − h, xi+1/2 = xl + ih, i = 0, 1, . . . , N, xN+3/2 = xr + h,

Π∗
h : x0 = xl − h/2, xi = (xi+1/2 + xi−1/2)/2, i = 1, . . . , N, xN+1 = xr + h/2

with spatial mesh size h = (xr − xl)/N . Furthermore, define the spatial difference

operators δxwκ = (wκ+1/2 − wκ−1/2)/h and δ2xwκ = (wκ+1 − 2wκ + wκ−1)/h
2 for κ =

i, i+ 1/2.

In addition, define the spaces of grid functions with periodic boundary conditions

Uh :=
{

v | v = {vi+1/2}, i = 0, . . . , N, and vi+1/2 = vN+i+1/2

}

,

Ph := {w | w = {wi}, i = 1, . . . , N, and wi = wN+i} ,

respectively on Πh and Π∗
h. Besides, define the discrete inner products and norms on

Ph and Uh as follows:

〈v,w〉 = h

N
∑

i=1

viwi, ‖v‖M =
√

〈v, v〉,

(v,w) = h

N−1
∑

i=0

vi+1/2wi+1/2, ‖v‖T =
√

(v, v).
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Let ∂xv = g and define the compact operator Lx := 1 + h2δ2x/24. We conclude that

for g(x) ∈ H4(I)

δxvi = Lxgi +R1,i[v], δxvi+1/2 = Lxgi+1/2 +R2,i+1/2[v], (2.14)

and by the well-known Bramble-Hilbert Lemma [3], the truncation errors can be esti-

mated as below

‖R1[v]‖M + ‖R2[v]‖T ≤ Ch4‖v‖H5(I). (2.15)

Besides, it is easy to show that Lx is symmetric and positive definite on Ph and Uh

(see [39]). Thus, we can define the discrete norms ‖w‖2∗,M = 〈Lxw,Lxw〉 and ‖v‖2∗,T =
(Lxv,Lxv), respectively, for w ∈ Ph and v ∈ Uh.

Now, applying operator Lx on both sides of the semi-discrete formulation (2.8), and

utilizing (2.14) we see

{

Lx

(

F δαt p
m
i + cpmi

)

+ δxu
m
i = Lxf

m
i + LxR

m
t,i[p] +Rm

1,i[u],

δxp
m
i+1/2 + Lx

(

a−1u
)m

i+1/2
= Rm

2,i+1/2[p]
(2.16)

for i = 1, . . . , N . Omitting the local truncation errors and letting {Pm
i , Um

i+1/2} de-

note the approximations to the exact solution {p(xi, tm), u(xi+1/2, tm)}, a fully-discrete

compact BCFD scheme can be proposed as follows (m ≥ 1):















Lx

(

F δαt P
m
i + cPm

i

)

+ δxU
m
i = Lxf

m
i , i = 1, . . . , N,

δxP
m
i+1/2 + Lx

(

a−1U
)m

i+1/2
= 0, i = 1, . . . , N,

P 0
i = po(xi), U0

i−1/2 = −a(xi−1/2)p
o(xi−1/2), i = 1, . . . , N,

(2.17)

enclosed with periodic boundary conditions

Um
1/2 = Um

N+1/2, Pm
0 = Pm

N , Pm
N+1 = Pm

1 . (2.18)

3. α-robust unconditional stability and error analysis

In this section, we shall discuss the stability and convergence of the scheme (2.17)-

(2.18) for the time-fractional reaction-diffusion model (2.1).

First, some useful lemmas are given for the subsequent analysis.

Lemma 3.1 ([1]). Let F δ
α
t be the discrete fractional operator defined by (2.2). Suppose

the tolerance error ǫ of the SOE approximation satisfies ǫ ≤ min{ω1−α(Tf )/3, αω2−α(Tf )}.

Then for any grid functions {vm|m ≥ 0}, it holds

2vm
(

F δ
α
t v

m
)

≥ F δ
α
t |vm|2 +

(

F δ
α
t v

m
)2

d
(m)
0

for 1 ≤ m ≤ Nt.



12 L. Ma, H. Fu, B. Zhang and S. Xie

Lemma 3.2 ([39]). For any w ∈ Ph and v ∈ Uh, we have

11

16
‖w‖2M ≤ ‖w‖2∗,M ≤ ‖w‖2M ,

11

16
‖v‖2T ≤ ‖v‖2∗,T ≤ ‖v‖2T .

Lemma 3.3. Let w ∈ Ph and v ∈ Uh. Then we have

〈δxv,Lxw〉 = −(Lxv, δxw).

Proof. By definition of the discrete inner products, we see

〈δxv,Lxw〉 =
h

24

N
∑

i=1

δxvi (wi−1 + 22wi + wi+1)

= − h

24

N−1
∑

i=0

(

vi+1/2δxwi−1/2 + 22vi+1/2δxwi+1/2 + vi+1/2δxwi+3/2

)

= −(Lxv, δxw),

where periodic conditions are used in the last step.

Lemma 3.4. If Assumption 1.2 holds and v ∈ Uh, then we have

(

Lxv,Lx(a
−1v)

)

≥
(

11

16a∗
− Cah

)

‖v‖2T ,

where Ca = 23‖∂xa‖∞/288a2∗.

Proof. By definition of the discrete inner product and Cauchy-Schwarz inequality,

we see for v ∈ Uh

(

Lxv,Lx(a
−1v)

)

=
h

242

N−1
∑

i=0

(vi−1/2 + 22vi+1/2 + vi+3/2)
(

a−1
i−1/2vi−1/2 + 22a−1

i+1/2vi+1/2 + a−1
i+3/2vi+3/2

)

≥ h

242

N−1
∑

i=0

(

441a−1
i+1/2 − 22a−1

i−1/2 − 22a−1
i+3/2 −

1

2
a−1
i−3/2 −

1

2
a−1
i+5/2

)

v2i+1/2,

where periodic conditions are used in the last step. Thus, we have

(

Lxv,Lx(a
−1v)

)

≥ 11

16a∗
‖v‖2T − 23

288
h
∥

∥δxa
−1
∥

∥

∞
‖v‖2T

≥
(

11

16a∗
− 23‖∂xa‖∞

288a2∗
h

)

‖v‖2T ,

which proves the conclusion.

The a prior estimate below plays a critical role in the following α-robust uncondi-

tional stability and error analysis of the fast BCFD method.
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Theorem 3.1. Let Wm = {Wm
i } ∈ Ph and V m = {V m

i+1/2} ∈ Uh be the solution of the

following compact BCFD scheme:

{

Lx

(

F δαt W
m
i + cWm

i

)

+ δxV
m
i = Hm

i +Qm
1,i, i = 1, . . . , N,

δxW
m
i+1/2 + Lx

(

a−1V
)m

i+1/2
= Qm

2,i+1/2, i = 1, . . . , N
(3.1)

enclosed with periodic boundary conditions

V m
1/2 = V m

N+1/2, Wm
0 = Wm

N , Wm
N+1 = Wm

1 , (3.2)

where Hm := {Hm
i }, Qm

1 := {Qm
1,i} ∈ Ph, Qm

2 := {Qm
2,i+1/2} ∈ Uh.

If Assumption 1.2 holds and the SOE approximation error ǫ ≤ min{ω1−α(Tf )/3,
αω2−α(Tf )}, then there exists a positive constant h0 := 144a2∗/23a

∗‖a′‖∞, such that for

h ≤ h0, the following estimates for Wm hold:

Case I. If c ≥ 0, we have

‖Wm‖M ≤ 4√
11

(

‖W 0‖M +2

m
∑

j=1

P
(m)
m−j‖Hj‖M +Cp max

1≤k≤m

(

‖Qk
1‖M + ‖Qk

2‖T
)

)

, (3.3)

where Cp is an α-robust positive constant defined by (3.15).

Case II. If c < 0 and the maximum time stepsize τ ≤ 1/ α
√

−6cΓ(2− α), we have

‖Wm‖M ≤ 8√
11

Eα(−6c tαm)

(

‖W 0‖M + 2 max
1≤k≤m

k
∑

j=1

P
(k)
k−j‖Hj‖M

+ Cp max
1≤k≤m

(

‖Qk
1‖M + ‖Qk

2‖T
)

)

. (3.4)

Furthermore, the following estimates for V m hold:

Case I. If c ≥ 0 and the maximum time stepsize τ ≤ 1/ α
√

3Γ(2− α)λ∗, we have

‖V m‖T ≤ 8a∗√
11

Eα(3λ∗t
α
m)

(

1

a∗
‖V 0‖T + max

1≤k≤m

k
∑

j=1

P
(k)
k−j

(

8√
11

‖δxHj‖T + 2
∥

∥

F δ
α
t Q

j
2

∥

∥

T

)

+ Cu max
1≤k≤m

√

‖Qk
1‖2M + ‖Qk

2‖2T

)

, (3.5)

where λ∗ and Cu are α-independent constants defined by (3.27) and (3.29).
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Case II. If c < 0 and the maximum time stepsize τ ≤ 1/
α

√

3Γ(2 − α)λ̂∗, we have

‖V m‖T ≤ 8a∗√
11

Eα(3λ̂∗t
α
m)

(

1

a∗
‖V 0‖T + max

1≤k≤m

k
∑

j=1

P
(k)
k−j

(

8√
11

‖δxHj‖T + 2
∥

∥

F δ
α
t Q

j
2

∥

∥

T

)

+ Ĉu max
1≤k≤m

√

‖Qk
1‖2M + ‖Qk

2‖2T

)

, (3.6)

where λ̂∗ and Ĉu are α-independent constants defined by (3.31) and (3.33).

Proof. The proof is split into two parts.

Part I. Estimate for Wm. Taking inner products on both sides of (3.1) with LxW
m

and LxV
m, respectively, for the first and second equations, we obtain

〈

Lx

(

F δαt W
m + cWm

)

,LxW
m
〉

+ 〈δxV m,LxW
m〉 = 〈Hm +Qm

1 ,LxW
m〉, (3.7)

(δxW
m,LxV

m) +
(

Lx(a
−1V m),LxV

m
)

= (Qm
2 ,LxV

m) . (3.8)

Note that Lemma 3.3 shows that

〈δxV m,LxW
m〉 = −(LxV

m, δxW
m).

We then sum the two equations (3.7) and (3.8) together to obtain

〈

Lx

(

F δαt W
m + cWm

)

,LxW
m
〉

+
(

Lx(a
−1V m),LxV

m
)

= 〈Hm +Qm
1 ,LxW

m〉+ (Qm
2 ,LxV

m) . (3.9)

Below we shall give estimates for (3.9) term by term. By Lemma 3.1, the first term

on the left-hand side of (3.9) can be bounded below by

〈

Lx

(

F δαt W
m + cWm

)

,LxW
m
〉

≥ 1

2
F δαt ‖Wm‖2∗,M + c ‖Wm‖2∗,M . (3.10)

While, Lemma 3.4 shows that the second term on the left-hand side of (3.9) can be

bounded below by

(

Lx(a
−1V m),LxV

m
)

≥
(

11

16a∗
− Cah

)

‖V m‖2T . (3.11)

Next, for the right-hand side of (3.9), a direct application of Cauchy-Schwarz in-

equality and Lemma 3.2 shows that

(Qm
2 ,LxV

m) ≤ 4a∗

3
‖Qm

2 ‖2T +
3

16a∗
‖V m‖2T , (3.12)

and

〈Hm +Qm
1 ,LxW

m〉 ≤ ‖Wm‖∗,M‖Hm +Qm
1 ‖M . (3.13)
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Now, we invoke the above estimates (3.10)-(3.13) into (3.9), then taking h sufficiently

small so that 1/a∗ − 2Cah ≥ 0, i.e, h ≤ h0 := 144a2∗/(23a
∗‖a′‖∞), we have

F δαt ‖Wm‖2∗,M ≤ −2c ‖Wm‖2∗,M + 2‖Wm‖∗,M‖Hm +Qm
1 ‖M +

8a∗

3
‖Qm

2 ‖2T . (3.14)

Therefore, if c ≥ 0, the first term on the right-hand side of (3.14) can be cancelled.

Then, applying the discrete fractional Grönwall inequality of Remark 2.2 to (3.14), we

see from Lemmas 3.2 and 2.2 that

√
11

4
‖Wm‖M ≤ ‖Wm‖∗,M

≤ ‖W 0‖∗,M +

m
∑

j=1

P
(m)
m−j

(

2‖Hj +Qj
1‖M +

2
√
6a∗

3
‖Qj

2‖T
)

+
2
√
6a∗

3
max

1≤k≤m
‖Qk

2‖T

≤ ‖W 0‖M + 2

m
∑

j=1

P
(m)
m−j‖Hj‖M + Cp max

1≤k≤m

(

‖Qk
1‖M + ‖Qk

2‖T
)

,

which implies (3.3), where the constant

Cp := max

{

3tαm
Γ(1 + α)

,
2
√
6a∗

3

(

1 +
3tαm

2Γ(1 + α)

)

}

(3.15)

is always bounded and independent of the solution. In fact, it is only related to the

upper bound of the diffusion coefficient, the fractional order α and time instant tm. In

particular, it is robust with respect to α, i.e., when α → 1−, the bound shall not blow

up.

However, if c < 0, we have to apply the discrete fractional Grönwall inequality in

Lemma 2.3 to (3.14) and also use the estimates in Lemmas 3.2 and 2.2 to obtain

√
11

4
‖Wm‖M ≤ ‖Wm‖∗,M

≤ 2Eα(−6c tαm)

(

‖W 0‖∗,M + max
1≤k≤m

k
∑

j=1

P
(k)
k−j

(

2‖Hj +Qj
1‖M +

2
√
6a∗

3
‖Qj

2‖T
)

+
2
√
6a∗

3
max

1≤k≤m
‖Qk

2‖T
)

≤ 2Eα(−6c tαm)

(

‖W 0‖M + 2 max
1≤k≤m

k
∑

j=1

P
(k)
k−j‖Hj‖M + Cp max

1≤k≤m

(

‖Qk
1‖M + ‖Qk

2‖T
)

)

,

which implies (3.4).
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Part II. Estimate for V m. Applying the discrete fractional operator F δ
α
t on both sides

of the second equation in (3.1), we obtain

δx
F δ

α
t W

m
i+1/2 + Lx

F δ
α
t (a

−1V )mi+1/2 = F δ
α
t Q

m
2,i+1/2, i = 1, . . . , N. (3.16)

Then, taking inner products on both sides of the first equation of (3.1) and (3.16) with

δx(a
−1V m) and Lx(a

−1V m), respectively, we have
〈

Lx(
F δ

α
t W

m + cWm), δx(a
−1V m)

〉

+
〈

δxV
m, δx(a

−1V m)
〉

=
〈

Hm +Qm
1 , δx(a

−1V m)
〉

, (3.17)
(

δx
F δ

α
t W

m,Lx(a
−1V m)

)

+
(

Lx
F δ

α
t (a

−1V m),Lx(a
−1V m)

)

=
(

F δ
α
t Q

m
2 ,Lx(a

−1V m)
)

. (3.18)

Similar as the proof in Part I, by Lemma 3.3 we get
〈

Lx
F δ

α
t W

m, δx(a
−1V m)

〉

= −
(

δx
F δ

α
t W

m,Lx(a
−1V m)

)

,

and then utilizing this relation and summing (3.17) and (3.18) together yields
(

Lx
F δ

α
t (a

−1V m),Lx(a
−1V m)

)

+ c
〈

LxW
m, δx(a

−1V m)
〉

+
〈

δxV
m, δx(a

−1V m)
〉

=
〈

Hm +Qm
1 , δx(a

−1V m)
〉

+
(

F δ
α
t Q

m
2 ,Lx(a

−1V m)
)

. (3.19)

Now, we estimate the left-hand side of (3.19) term by term. Using Lemma 3.1, the

first term can be bounded below by
(

Lx
F δ

α
t (a

−1V m),Lx(a
−1V m)

)

≥ 1

2
F δ

α
t ‖a−1V m‖2∗,T . (3.20)

And for the second term, by Lemma 3.3 and using the second equation in (3.1), we see
〈

LxW
m, δx(a

−1V m)
〉

= −
(

Lx(a
−1V m), δxW

m
)

= ‖a−1V m‖2∗,T −
(

Lx(a
−1V m), Qm

2

)

.

Then, by Young’s inequality, we can easily prove that

〈

LxW
m, δx(a

−1V m)
〉

≥ 1

2
‖a−1V m‖2∗,T − 1

2
‖Qm

2 ‖2T , (3.21)

and also
〈

LxW
m, δx(a

−1V m)
〉

≤ 3

2
‖a−1V m‖2∗,T +

1

2
‖Qm

2 ‖2T . (3.22)

For the third term, by Cauchy-Schwarz inequality, we have

〈

δxV
m, δx(a

−1V m)
〉

= h

N
∑

i=1

(δxV
m
i )
(

a−1
i+1/2δxV

m
i + V m

i−1/2(δxa
−1
i )
)

≥ 1

a∗
‖δxV m‖2M − ‖δxa−1‖∞‖δxV m‖M‖V m‖T

≥ 1

2a∗
‖δxV m‖2M − (a∗)3‖a′‖2∞

2a4∗
‖a−1V m‖2T . (3.23)
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Next, we estimate the right-hand side of (3.19). For the first term, by using Lem-

ma 3.3, the fact that

δx(a
−1V )mi = a−1

i+1/2δxV
m
i + V m

i−1/2(δxa
−1
i ),

and Cauchy-Schwarz inequality, we have
〈

Hm +Qm
1 , δx(a

−1V m)
〉

= −
(

δxH
m, a−1V m

)

+
〈

Qm
1 , δx(a

−1V m)
〉

≤ ‖δxHm‖T ‖a−1V m‖T +

(

a∗

2a2∗
+

1

2a∗

)

‖Qm
1 ‖2M

+
1

2a∗
‖δxV m‖2M +

(a∗)3‖a′‖2∞
2a4∗

‖a−1V m‖2T . (3.24)

Meanwhile, the second term can be bounded by
(

F δ
α
t Q

m
2 ,Lx(a

−1V m)
)

≤
∥

∥

F δ
α
t Q

m
2

∥

∥

T

∥

∥a−1V m
∥

∥

∗,T
. (3.25)

Therefore, if c ≥ 0, inserting the estimates (3.20)-(3.21), (3.23)-(3.25) into (3.19),

and utilizing Lemma 3.2, we have

F δ
α
t

∥

∥a−1V m
∥

∥

2

∗,T
≤ λ∗

∥

∥a−1V m
∥

∥

2

∗,T
+

(

8√
11

‖δxHm‖T + 2
∥

∥

F δ
α
t Q

m
2

∥

∥

T

)

∥

∥a−1V m
∥

∥

∗,T

+C2
∗

(

‖Qm
1 ‖2M + ‖Qm

2 ‖2T
)

, (3.26)

where the constants

λ∗ :=
32(a∗)3‖a′‖2∞

11a4∗
, C2

∗ := max

{

c,
a∗

a2∗
+

1

a∗

}

(3.27)

are both bounded, independent of the solution, and only related to the coefficients in

model (2.1).

Thus, applying the discrete fractional Grönwall inequality in Lemma 2.3 to (3.26)

and using the estimate in Lemma 2.2, we have

‖a−1V m‖∗,T ≤ 2Eα(3λ∗t
α
m)

×
(

‖a−1V 0‖∗,T + max
1≤k≤m

k
∑

j=1

P
(k)
k−j

(

8√
11

‖δxHj‖T + 2‖F δαt Qj
2‖T + C∗

√

‖Qj
1‖2M+‖Qj

2‖2T
)

+ C∗ max
1≤k≤m

√

‖Qk
1‖2M + ‖Qk

2‖2T

)

≤ 2Eα(3λ∗t
α
m)

(

‖a−1V 0‖∗,T + max
1≤k≤m

k
∑

j=1

P
(k)
k−j

(

8√
11

‖δxHj‖T + 2‖F δαt Qj
2‖T
)

+ Cu max
1≤k≤m

√

‖Qk
1‖2M + ‖Qk

2‖2T

)

, (3.28)
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where the constant

Cu = C∗ +
3tαmC∗

2Γ(1 + α)
(3.29)

is also bounded and α-robust.

However, if c < 0, we insert the estimates (3.20), (3.22), (3.23)-(3.25) into (3.19),

and also utilize Lemma 3.2 to get

F δ
α
t ‖a−1V m‖2∗,T ≤ λ̂∗‖a−1V m‖2∗,T +

(

8√
11

‖δxHm‖T + 2‖F δαt Qm
2 ‖T

)

‖a−1V m‖∗,T

+ Ĉ2
∗

(

‖Qm
1 ‖2M + ‖Qm

2 ‖2T
)

, (3.30)

where the constants

λ̂∗ :=
32(a∗)3‖a′‖2∞

11a4∗
− 3c, Ĉ2

∗ := max

{

−c,
a∗

a2∗
+

1

a∗

}

(3.31)

are also bounded, independent of the solution, and only related to the coefficients in

model (2.1).

Similarly, applying the discrete fractional Grönwall inequality in Lemma 2.3 to

(3.30) and using the estimate in Lemma 2.2, we have

‖a−1V m‖∗,T ≤ 2Eα(3λ̂∗t
α
m)

×
(

‖a−1V 0‖∗,T + max
1≤k≤m

k
∑

j=1

P
(k)
k−j

(

8√
11

‖δxHj‖T + 2
∥

∥

F δ
α
t Q

j
2

∥

∥

T
+ Ĉ∗

√

‖Qj
1‖2M+‖Qj

2‖2T
)

+ Ĉ∗ max
1≤k≤m

√

‖Qk
1‖2M + ‖Qk

2‖2T

)

≤ 2Eα(3λ̂∗t
α
m)

(

‖a−1V 0‖∗,T + max
1≤k≤m

k
∑

j=1

P
(k)
k−j

(

8√
11

‖δxHj‖T + 2
∥

∥

F δ
α
t Q

j
2

∥

∥

T

)

+ Ĉu max
1≤k≤m

√

‖Qk
1‖2M + ‖Qk

2‖2T

)

, (3.32)

where the constant

Ĉu = Ĉ∗ +
3tαmĈ∗

2Γ(1 + α)
(3.33)

is also bounded and α-robust.

Finally, note that

‖V m‖∗,T ≤ a∗‖a−1V m‖∗,T , ‖a−1V 0‖∗,T ≤ a−1
∗ ‖V 0‖∗,T . (3.34)

Therefore, combinations of (3.28), (3.32) with (3.34), and using Lemma 3.2 directly

concludes the estimates (3.5) and (3.6), respectively.
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Theorem 3.2 (Stability). Let Pm = {Pm
i } ∈ Ph and Um = {Um

i+1/2} ∈ Uh be the

solution of the fast compact BCFD scheme (2.17)-(2.18). Suppose Assumption 1.2 hold

and the SOE approximation error satisfies ǫ ≤ min{ω1−α(Tf )/3, αω2−α(Tf )}, then there

exist positive constant h0, such that for h ≤ h0, if c ≥ 0, the following stability estimate

holds:

‖Pm‖M ≤ C1

(

‖P 0‖M + max
1≤k≤m

‖fk‖M
)

, (3.35)

otherwise, if c < 0 and the maximum time stepsize τ ≤ 1/ α
√

−6cΓ(2− α), we have

‖Pm‖M ≤ Ĉ1

(

‖P 0‖M + max
1≤k≤m

‖fk‖M
)

, (3.36)

where C1 and Ĉ1 are two α-robust positive constants that related to Cp.

Furthermore, if c ≥ 0 and the maximum time stepsize τ ≤ 1/ α
√

3Γ(2− α)λ∗, we have

‖Um‖T ≤ C2

(

‖U0‖T + max
1≤k≤m

‖fk‖M
)

, (3.37)

otherwise, if c < 0 and the maximum time stepsize τ ≤ 1/
α

√

3Γ(2− α)λ̂∗, we have

‖Um‖T ≤ Ĉ2

(

‖U0‖T + max
1≤k≤m

‖fk‖M
)

, (3.38)

where C2 and Ĉ2 are two α-robust positive constants that related to Cu and Ĉu, respec-

tively.

Proof. The conclusion is a direct result of Theorem 3.1. In fact, the solution pair

(Pm, Um) of (2.17)-(2.18) can be viewed as (Wm, V m) of (3.1) with Qm
1 = Lxf

m and

Hm = Qm
2 = 0. Therefore, under suitable conditions, if c ≥ 0, we have

‖Pm‖M ≤ 4√
11

(

‖P 0‖M + Cp max
1≤k≤m

‖fk‖∗,M
)

,

‖Um‖T ≤ 8a∗√
11a∗

Eα(3λ∗t
α
m)

(

‖U0‖T + a∗ Cu max
1≤k≤m

‖fk‖∗,M
)

,

which together with Lemma 3.2 proves (3.35) and (3.37). Otherwise, if c < 0, we have

‖Pm‖M ≤ 8√
11

Eα(−6c tαm)

(

‖P 0‖M + Ĉp max
1≤k≤m

‖fk‖∗,M
)

,

‖Um‖T ≤ 8a∗√
11a∗

Eα(3λ̂∗t
α
m)

(

‖U0‖T + a∗ Ĉu max
1≤k≤m

‖fk‖∗,M
)

,

which together with Lemma 3.2 proves (3.36) and (3.38).

Before deriving the error estimate for the fast compact BCFD scheme (2.17)-(2.18),

we first prove the following two lemmas which are useful in our analysis.
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Lemma 3.5. If p(x, t) satisfies the condition (1.3) in Assumption 1.1, then there exists

a positive constant C3 independent of α, such that for R2 = R2[p] defined by (2.14) we

have
m
∑

k=1

P
(m)
m−k

∥

∥

F δ
α
t R

k
2

∥

∥

T
≤ C3(tm + tαm/α)h4. (3.39)

Proof. By definition of the fractional operator F δ
α
t , and considering the positive

properties of the DC and DCC kernels {d(m)
m−k} and {P (m)

m−j}, by Lemma 2.2, we obtain

m
∑

k=1

P
(m)
m−k

∥

∥

F δ
α
t R

k
2

∥

∥

T
=

m
∑

k=1

P
(m)
m−k

∥

∥

∥

∥

∥

k
∑

j=1

d
(k)
k−j∇τR

j
2

∥

∥

∥

∥

∥

T

≤
m
∑

k=1

P
(m)
m−k

k
∑

j=1

d
(k)
k−j

∥

∥Rj
2 −Rj−1

2

∥

∥

T
.

Then, we change the order of summations and apply the identity (2.7) to obtain

m
∑

k=1

P
(m)
m−k

∥

∥

F δ
α
t R

k
2

∥

∥

T
≤

m
∑

k=1

∥

∥Rk
2 −Rk−1

2

∥

∥

T
=

m
∑

k=1

∥

∥

∥

∥

∥

∫ tk

tk−1

∂sR2(s)ds

∥

∥

∥

∥

∥

T

≤
∫ tm

t0

‖∂sR2(s)‖T ds.

Based on the estimate (2.15) and the assumption ‖∂tp‖H5(I) ≤ C(1 + tα−1), we imme-

diately get the conclusion (3.39).

Lemma 3.6. If p(x, t) satisfies the condition (1.3) in Assumption 1.1, then there exist an

α-robust positive constant C4, such that for Rt = Rt[p] we have

m
∑

k=1

P
(m)
m−k

∥

∥δxR
k
t

∥

∥

T
≤ C4

(

N
−min {2−α,rα}
t + ǫ

)

. (3.40)

Proof. By definition of the discrete norm and Cauchy-Schwarz inequality, we have

m
∑

k=1

P
(m)
m−k

∥

∥δxR
k
t

∥

∥

T
=

m
∑

k=1

P
(m)
m−k

√

√

√

√h

N−1
∑

i=0

(

1

h

∫ xi+1

xi

(Rk
t )xdx

)2

≤
m
∑

k=1

P
(m)
m−k

√

√

√

√

1

h

N−1
∑

i=0

(∫ xi+1

xi

12dx

∫ xi+1

xi

(Rk
t )

2
xdx

)

≤
m
∑

k=1

P
(m)
m−k

∥

∥(Rk
t )x
∥

∥

L2(I)
.
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Based on the estimate in Lemma 2.4 and using the assumption

‖∂tp‖H1(I) + t‖∂ttp‖H1(I) ≤ C(1 + tα−1),

we immediately get (3.40).

Theorem 3.3 (Convergence). Let (pm, um) be the exact solution pair of model (2.1), and

(Pm, Um) be the numerical solution pair of the fast compact BCFD scheme (2.17)-(2.18).

Suppose Assumptions 1.1-1.2 hold, and the SOE tolerance error ǫ ≤ min{ω1−α(Tf )/3,
αω2−α(Tf )}. Moreover, assume that a(x) ∈ C4(I). Then, if c ≥ 0, we have

‖pm − Pm‖M ≤ C5

(

N
−min {2−α,rα}
t + h4 + ǫ

)

for h ≤ h0, (3.41)

otherwise, if c < 0 and the maximum time stepsize τ ≤ 1/ α
√

−6cΓ(2− α), we have

‖pm − Pm‖M ≤ Ĉ5

(

N
−min {2−α,rα}
t + h4 + ǫ

)

for h ≤ h0, (3.42)

where C5 and Ĉ5 are two α-robust positive constants that related to Cp.

Furthermore, if c ≥ 0 and the maximum time stepsize τ ≤ 1/ α
√

3Γ(2 − α)λ∗,

‖um − Um‖T ≤ C6

(

N
−min {2−α,rα}
t + h4 + ǫ

)

, (3.43)

if c < 0 and the maximum time stepsize τ ≤ 1/
α

√

3Γ(2− α)λ̂∗, we have

‖um − Um‖T ≤ Ĉ6

(

N
−min {2−α,rα}
t + h4 + ǫ

)

, (3.44)

where C6 and Ĉ6 are two α-robust positive constants that related to Cu and Ĉu, respec-

tively.

Proof. Let ξmi := p(xi, tm) − Pm
i and ηmi+1/2 := u(xi+1/2, tm) − Um

i+1/2 with ξ0i =

η0i+1/2 = 0. By subtracting the equivalent formulation (2.16) of model (2.1) from

(2.17)-(2.18), we obtain the following error equations:

{

Lx

(

F δαt ξ
m
i + cξmi

)

+ δxη
m
i = Lx(R

m
t,i) +Rm

1,i[u], i = 1, . . . , N,

δxξ
m
i+1/2 + Lx

(

a−1η
)m

i+1/2
= Rm

2,i+1/2[p], i = 1, . . . , N
(3.45)

for m = 1, . . . , Nt.

It is clear that, with Hm = Lx(
FRm

t ), Qm
1 = Rm

1 [u] and Qm
2 = Rm

2 [p] in (3.1), we

have Wm = ξm and V m = ηm. Therefore, if c ≥ 0, we conclude from Theorem 3.1

together with Lemma 3.2 that

‖ξm‖M ≤ 4√
11



2
m
∑

j=1

P
(m)
m−j

∥

∥Rj
t

∥

∥

M
+ Cp max

1≤k≤m

(

‖Rk
1‖M + ‖Rk

2‖T
)



 for h ≤ h0.
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Furthermore, if the maximum time stepsize τ ≤ 1/ α
√

3Γ(2− α)λ∗, we also have

‖ηm‖T ≤ 8a∗√
11

Eα(3λ∗t
α
m)

(

max
1≤k≤m

k
∑

j=1

P
(k)
k−j

(

8√
11

∥

∥δx(R
j
t )
∥

∥

T
+ 2
∥

∥

F δ
α
t R

j
2

∥

∥

T

)

+ Cu max
1≤k≤m

√

‖Rk
1‖2M + ‖Rk

2‖2T

)

.

Therefore, the conclusions (3.41) and (3.43) follows from (2.15), Lemma 2.4 and sim-

ilar results of Lemmas 3.5 and 3.6.

Otherwise, for c < 0, if the maximum time stepsize τ ≤ 1/ α
√

−6cΓ(2− α), we have

‖ξm‖M ≤ 8√
11

Eα(−6c tαm)

(

2 max
1≤k≤m

k
∑

j=1

P
(k)
k−j

∥

∥Rj
t

∥

∥

M

+ Cp max
1≤k≤m

(

‖Rk
1‖M + ‖Rk

2‖T
)

)

for h ≤ h0.

Besides, if the maximum time stepsize τ ≤ 1/
α

√

3Γ(2− α)λ̂∗, we have

‖ηm‖T ≤ 8a∗√
11

Eα(3λ̂∗t
α
m)

(

max
1≤k≤m

k
∑

j=1

P
(k)
k−j

(

8√
11

∥

∥δxR
j
t

∥

∥

T
+ 2
∥

∥

F δ
α
t R

m
2

∥

∥

T

)

+ Ĉu max
1≤k≤m

√

‖Qk
1‖2M + ‖Qk

2‖2T

)

.

Thus, we can immediately get the estimates (3.42) and (3.44) for c < 0.

4. Numerical results

In this section, we shall numerically show the performance of the proposed fast

fourth-order compact BCFD scheme for solving model (1.1). All the numerical experi-

ments are performed in Matlab R2019b on a laptop with the configuration: 11th Gen

Intel(R) Core (TM) i7-11700 @ 2.50GHz 2.50 GHz and 16.00 GB RAM. In most tests,

without special statement the mesh grading parameter is chosen as r = (2 − α)/α to

ensure the optimal (2− α)-th order temporal convergence. Besides, we choose the tol-

erance ǫ = 10−12 in order to maintain the convergence rates of the fast version BCFD

scheme. In all tests, we use Errorp and Erroru to denote the errors for p and u in the dis-

crete L2-norm at time t = Tf , i.e., Errorp := ‖pNt−PNt‖M and Erroru := ‖uNt−UNt‖T .
Example 4.1. Let I = (0, 1) and Tf = 1. We consider an example of the time-fractional

model (1.1) with periodic boundary conditions. Set a(x) = 2 + cos(2πx) and c = 1/2
(positive) or c = −1/2 (negative). Given the exact solutions

p(x, t) = tα cos(2πx), u(x, t) = 2πtα
(

2 + cos(2πx)
)

sin(2πx),

such that the source function f(x, t) can be computed accordingly.



Fast Compact BCFD Method for Time-Fractional Reaction-Diffusion Equations 23

First, we set Nt = 5000 to investigate the spatial accuracy of the fast L1-compact

BCFD scheme (2.17)-(2.18). Numerical results with α = 0.3, 0.5, 0.7 are presented in

Tables 1-2, where both positive and negative reaction terms are tested. The results indi-

cate that the fast compact BCFD method (2.17)-(2.18) is actually fourth-order accurate

in space for both the primal variable p and its flux u, whether the reaction is positive

or not. Therefore, the numerical findings are well in agreement with the theoretical

analysis.

Second, we set N = [10N
(2−α)/4
t ] to show the temporal convergence rate of the

fast L1-compact BCFD scheme (2.17). Numerical errors and convergence rates for

both p and u are listed in Tables 3-4, in which (2 − α)-th order accurate in time is

observed when the mesh grading parameter r = (2 − α)/α, regardless of positive

Table 1: Errors and spatial convergence rates of (2.17) for Example 4.1 with c = 1/2.

α N Errorp Erroru Ratep Rateu

0.3 6 5.9369e-03 1.3203e-01 — —

12 3.7320e-04 8.1161e-03 3.9916 4.0240

24 2.3228e-05 5.0610e-04 4.0059 4.0032 ≈ 4

48 1.4949e-06 3.2056e-05 3.9577 3.9807

0.5 6 5.9371e-03 1.3204e-01 — —

12 3.7317e-04 8.1159e-03 3.9918 4.0241

24 2.3187e-05 5.0567e-04 4.0084 4.0044 ≈ 4

48 1.4461e-06 3.1560e-05 4.0031 4.0020

0.7 6 5.9365e-03 1.3203e-01 — —

12 3.7314e-04 8.1152e-03 3.9918 4.0241

24 2.3181e-05 5.0558e-04 4.0086 4.0046 ≈ 4

48 1.4422e-06 3.1517e-05 4.0065 4.0037

Table 2: Errors and spatial convergence rates of (2.17) for Example 4.1 with c = −1/2.

α N Errorp Erroru Ratep Rateu

0.3 6 5.9611e-03 1.3257e-01 — —

12 3.7467e-04 8.1478e-03 3.9918 4.0242

24 2.3320e-05 5.0807e-04 4.0059 4.0032 ≈ 4

48 1.5015e-06 3.2187e-05 3.9570 3.9804

0.5 6 5.9613e-03 1.3257e-01 — —

12 3.7465e-04 8.1476e-03 3.9920 4.0243

24 2.3279e-05 5.0763e-04 4.0084 4.0045 ≈ 4

48 1.4517e-06 3.1682e-05 4.0031 4.0019

0.7 6 5.9608e-03 1.3256e-01 — —

12 3.7461e-04 8.1468e-03 3.9920 4.0243

24 2.3273e-05 5.0754e-04 4.0086 4.0046 ≈ 4

48 1.4478e-06 3.1638e-05 4.0066 4.0037
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Table 3: Errors and temporal convergence rates of (2.17) for Example 4.1 with c = 1/2.

α Nt Errorp Erroru Ratep Rateu

0.3 48 6.6586e-06 4.3784e-05 – –

96 2.1412e-06 1.7753e-05 1.6368 1.6390

192 6.8204e-07 7.2040e-06 1.6504 1.6502 ≈ 1.7

384 2.1119e-07 2.9244e-06 1.6912 1.6916

0.5 48 8.2408e-06 9.9446e-05 – –

96 2.9393e-06 3.5684e-05 1.4873 1.4786

192 1.0459e-06 1.2625e-05 1.4906 1.4989 ≈ 1.5

384 3.7162e-07 4.4920e-06 1.4928 1.4908

0.7 48 9.8380e-06 1.3924e-04 – –

96 3.9765e-06 5.6064e-05 1.3068 1.3124

192 1.6144e-06 2.2842e-05 1.3004 1.2953 ≈ 1.3

384 6.5461e-07 9.2453e-06 1.3023 1.3048

Table 4: Errors and temporal convergence rates of (2.17) for Example 4.1 with c = −1/2.

α Nt Errorp Erroru Ratep Rateu

0.3 48 6.7504e-06 7.8391e-05 – –

96 2.1707e-06 2.5170e-05 1.6367 1.6389

192 6.9145e-07 8.0192e-06 1.6504 1.6502 ≈ 1.7

384 2.1410e-07 2.4824e-06 1.6912 1.6916

0.5 48 8.3522e-06 1.0063e-04 – –

96 2.9788e-06 3.6105e-05 1.4874 1.4788

192 1.0600e-06 1.2776e-05 1.4906 1.4987 ≈ 1.5

384 3.7664e-07 4.5455e-06 1.4928 1.4909

0.7 48 9.9551e-06 1.4040e-04 – –

96 4.0240e-06 5.6537e-05 1.3067 1.3123

192 1.6336e-06 2.3033e-05 1.3005 1.2954 ≈ 1.3

384 6.6242e-07 9.3230e-06 1.3022 1.3048

or negative reaction. Besides, we also assess the significant impact of various mesh

grading parameter values r on the temporal accuracy for fixed α = 0.5. The results

in Table 5 demonstrate clearly that the temporal accuracy is of order min{2 − α, rα},

which shows that Theorem 3.3 gives a sharp temporal error bound for the computed

BCFD solution.

For comparison, the classical L1 compact BCFD formula is also proposed as follows:











Lx(δ
α
t P

m
i + cPm

i ) + δxU
m
i = Lxf

m
i , i = 1, . . . , N,

δxP
m
i+1/2 + Lx(a

−1U)mi+1/2 = 0, i = 1, . . . , N,

P 0
i = po(xi), U0

i−1/2 = −a(xi−1/2)p
o(xi−1/2), i = 1, . . . , N,

(4.1)

enclosed with periodic boundary conditions (2.18), where δαt is defined by (2.11).
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Table 5: Errors and temporal convergence rates of (2.17) for Example 4.1 with α = 0.5, c = 1/2.

r Nt Errorp Erroru Ratep Rateu

300 4.8047e-05 1.0483e-03 — —

600 3.2825e-05 7.1607e-04 0.5496 0.5499

1 1200 2.3179e-05 5.0559e-04 0.5019 0.5021 ≈ 0.5

2400 1.6829e-05 3.6705e-04 0.4618 0.4619

300 1.0821e-05 2.3656e-04 — —

600 6.4653e-06 1.4120e-04 0.7430 0.7444
2− α

2α
1200 3.6807e-06 8.0344e-05 0.8127 0.8135 ≈ 0.75

2400 2.2464e-06 4.9017e-05 0.7123 0.7129

300 5.3730e-07 6.4874e-06 — —

600 1.9073e-07 2.3042e-06 1.4941 1.4933
2− α

α
1200 6.7631e-08 8.1575e-07 1.4958 1.4980 ≈ 1.5

2400 2.3962e-08 2.8929e-07 1.4969 1.4955

300 1.5039e-06 1.7349e-05 — —

600 5.3700e-07 6.1947e-06 1.4857 1.4857
2(2− α)

α
1200 1.9143e-07 2.2081e-06 1.4880 1.4881 ≈ 1.5

2400 6.7897e-08 7.8320e-07 1.4954 1.4953

Third, comparisons of the compact BCFD scheme (4.1) and its fast version (2.17)

for α = 0.4, 0.6 are tested. It is observed from Table 6 that the fast version L1-compact

BCFD scheme can keep almost the same accuracy as the conventional L1-compact

BCFD scheme, but it costs less CPU running time. For example, when α = 0.4 and

(Nt, N) = (3500, 50), with getting almost the same errors respectively for the approxi-

Table 6: Comparisons of (2.17) and (4.1) for Example 4.1.

α Nt N Errorp Erroru CPU (s)

Method (4.1)

1000 20 4.8098e-05 1.0488e-03 2min 9s

0.4 2000 100 7.4274e-08 1.6347e-06 58min 57s

3500 50 1.2288e-06 2.6812e-05 8h 12min

1000 100 1.3573e-07 1.9912e-06 2min 57s

0.6 2000 30 9.5273e-06 2.0719e-04 49min 26s

3500 25 1.9685e-05 4.2940e-04 7h 50min

Method (2.17)

1000 20 4.8098e-05 1.0488e-03 3s

0.4 2000 100 7.4267e-08 1.6352e-06 34s

3500 50 1.2288e-06 2.6812e-05 41s

1000 100 1.3572e-07 1.9912e-06 7s

0.6 2000 30 9.5273e-06 2.0719e-04 7s

3500 25 1.9685e-05 4.2940e-04 12s
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Table 7: α-robustness of (2.17) for Example 4.1 with c = ±1/2.

c α = 0.9 α = 0.95 α = 0.99 α = 0.995

1/2 Errorp 1.4210e-06 9.2922e-07 2.3014e-07 1.1773e-07

Erroru 1.6494e-05 1.0782e-05 2.6639e-06 1.3595e-06

-1/2 Errorp 1.4413e-06 9.4245e-07 2.3342e-07 1.1940e-07

Erroru 1.6724e-05 1.0932e-05 2.7010e-06 1.3784e-06

mations of p and u, the scheme (4.1) takes more than 8 hours, while the fast algorithm

(2.17)-(2.18) costs only 41 seconds! This indeed shows that the SOE-based fast al-

gorithm has a great advantage in long-term or small temporal stepsize modeling and

simulations.

Finally, to test the α-robustness of the estimates in Theorem 3.3, we respectively

choose α = 0.9, 0.95, 0.99, 0.995 which approaches to 1 to observe the convergence

results. As seen from Table 7 that, for fixed Nt = N = 200, all the errors change

slightly as α → 1−, not only for positive reaction but also for negative one, which

shows the method is α-robust–as our convergence analysis has already predicted.

Example 4.2. Let I = (0, 1) and Tf = 1. Here we consider a time-fractional model

(1.1) with Neumann boundary conditions a(x)px(x, t) = 0 for x = {0, 1}. Set a(x) =
1 + x2 and c = 1/4 or c = −1/4. Given the exact solutions

p(x, t) = (tα + t) cos(2πx), u(x, t) = 2π(tα + t)(1 + x2) sin(2πx),

such that the source function f(x, t) can be computed accordingly.

In the context of Neumann boundary conditions, the classical L1-compact BCFD

scheme and its fast version are respectively proposed as follows:
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enclosed with boundary conditions

Um
1/2 = Um

N+1/2 = 0, (4.4)

where

L̂xgi =



















26g1 − 5g2 + 4g3 − g4
24

, i = 1,

Lxgi, i = 2, . . . , N − 1,

26gN − 5gN−1 + 4gN−2 − gN−3

24
, i = N,

(4.5)
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L̃xgi =























g1/2 + 4g1 + g3/2

6
, i = 1,

Lxgi, i = 2, . . . , N − 1,

gN−1/2 + 4gN + gN+1/2

6
, i = N.

(4.6)

The same tests as those in Example 4.1 for the fast compact BCFD scheme (4.3)-

(4.4) are given in this example. We basically have the following observations:

(i) Although only the fast compact BCFD scheme (2.17)-(2.18) for the time-fractional

model (1.1) with periodic boundary conditions is analyzed, it is experimentally

demonstrated that the above algorithm can also guarantee convergence of fourth-

order accurate in space (see, Tables 8-9 for fixed Nt = 3000) and (2−α)-th order

accurate in time (see, Tables 10-11 for N = 1000), in which both positive and

negative reaction c = ±1/4 are tested.

(ii) As anticipated, when α → 1−, α-robustness of the compact BCFD scheme (4.3)-

(4.4) is also verified, see Table 13 for fixed Nt = N = 200 and reaction coefficient

c = ±1/4.

(iii) From Table 12, we see that the fast version L1-compact BCFD scheme (4.3)-(4.4)

has the same accuracy as the conventional L1-compact BCFD scheme (4.2) and

(4.4), but is much faster than the latter one.

For comparison, we also test the second-order in space fast L1-BCFD method for

model (1.1)










F δαt P
m
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i + δxU
m
i = fm

i , i = 1, . . . , N,

(aδxP )mi+1/2 + Um
i+1/2 = 0, i = 1, . . . , N,

P 0
i = po(xi), i = 1, . . . , N,

(4.7)

Table 8: Errors and spatial convergence rates of (4.3) for Example 4.2 with c = 1/4.

α N Errorp Erroru Ratep Rateu

0.3 6 7.5338e-02 3.0875e-02 — —

12 3.5678e-03 2.2579e-03 4.4002 3.7733

24 1.9913e-04 1.4269e-04 4.1632 3.9840 ≈ 4

48 1.1743e-05 9.2714e-06 4.0837 3.9439

0.5 6 6.8840e-02 3.0833e-02 — —

12 3.2034e-03 2.2553e-03 4.4255 3.7730

24 1.7967e-04 1.4203e-04 4.1561 3.9890 ≈ 4

48 1.0639e-05 8.6912e-06 4.0778 4.0305

0.7 6 6.0487e-02 3.0783e-02 — —

12 2.7370e-03 2.2525e-03 4.4659 3.7725

24 1.5482e-04 1.4168e-04 4.1439 3.9907 ≈ 4

48 9.2510e-06 8.5096e-06 4.0648 4.0574
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Table 9: Errors and spatial convergence rates of (4.3) for Example 4.2 with c = −1/4.

α N Errorp Erroru Ratep Rateu
0.3 6 1.1592e-01 3.2000e-02 — —

12 5.8574e-03 2.3052e-05 4.3068 3.7950

24 3.2151e-04 1.4597e-04 4.1873 3.9811 ≈ 4

48 1.8530e-05 9.5076e-06 4.1169 3.9405

0.5 6 9.7266e-02 3.1952e-02 — —

12 4.8029e-03 2.3023e-03 4.3399 3.7947

24 2.6511e-04 1.4530e-04 4.1792 3.9859 ≈ 4

48 1.5383e-05 8.9268e-06 4.1071 4.0247

0.7 6 7.8479e-02 3.1897e-02 — —

12 3.7444e-03 2.2990e-03 4.3895 3.7943

24 2.0857e-04 1.4493e-04 4.1660 3.9875 ≈ 4

48 1.0455e-05 8.0255e-05 4.0910 4.0510

Table 10: Errors and temporal convergence rates of (4.3) for Example 4.2 with c = 1/4.

α Nt Errorp Erroru Ratep Rateu
0.3 100 3.1007e-06 2.3876e-05 — —

200 9.8753e-07 7.6042e-06 1.6507 1.6507

400 3.1241e-07 2.4056e-06 1.6603 1.6603 ≈ 1.7

800 9.6300e-08 7.5698e-07 1.6978 1.7067

0.5 100 4.3413e-06 3.3310e-05 — —

200 1.5449e-06 1.1854e-05 1.4905 1.4905

400 5.4887e-07 4.2114e-06 1.4930 1.4930 ≈ 1.5

800 1.9473e-07 1.4942e-06 1.4949 1.4948

0.7 100 5.7776e-06 4.4079e-05 — —

200 2.3429e-06 1.7874e-05 1.3021 1.3022

400 9.5082e-07 7.2533e-06 1.3010 1.3011 ≈ 1.3

800 3.8600e-07 2.9445e-06 1.3005 1.3006

Table 11: Errors and temporal convergence rates of (4.3) for Example 4.2 with c = −1/4.

α Nt Errorp Erroru Ratep Rateu
0.3 100 3.1412e-06 2.4112e-05 — —

200 1.0004e-06 7.6793e-06 1.6507 1.6507

400 3.1649e-07 2.4294e-06 1.6603 1.6603 ≈ 1.7

800 9.7485e-08 7.5245e-07 1.6989 1.6909

0.5 100 4.4002e-06 3.3644e-05 — —

200 1.5659e-06 1.1972e-05 1.4905 1.4905

400 5.5631e-07 4.2536e-06 1.4930 1.4930 ≈ 1.5

800 1.9738e-07 1.5092e-06 1.4949 1.4948

0.7 100 5.8608e-06 4.4532e-05 — —

200 2.3767e-06 1.8057e-05 1.3021 1.3022

400 9.6453e-07 7.3279e-06 1.3010 1.3011 ≈ 1.3

800 3.9156e-07 2.9748e-06 1.3005 1.3006
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enclosed with boundary conditions (4.4). This scheme can be derived similarly as

[51] for the time-fractional diffusion equation or [23] for the time-fractional Cattaneo

equation.

We display the results of the fast L1-BCFD scheme for α = 0.3, 0.5, 0.7 in Table 14,

where Nt = 3000 is still taken so that the spatial error dominates the temporal error.

Compared with the results in Table 8, it can be seen that the proposed fast L1-compact

BCFD method can greatly improve the convergence rates, and thus the errors decrase

much more faster than the L1-BCFD method when the number of spatial grids N in-

crease. For example, when α = 0.5, the error order of magnitude for the fast L1-BCFD

scheme is about 10−4 for N = 192, while that for the fast L1-compact BCFD scheme

can reach 10−4 for only N = 24. Moreover, compared to the fast L1-BCFD method, we

see from Table 15 that the fast L1-compact BCFD method takes less CPU time when

the same error accuracy is achieved. For example, when α = 0.4, the fast L1-compact

BCFD scheme (4.3) costs only 9 seconds to get the error order of magnitude 10−7,

while the L1-BCFD scheme (4.7) runs more than 10 minutes for the same error. The

comparison is believed to be more obviously for large-scale modeling and simulations

or for high-dimensional model problem.

Table 12: Comparisons of (4.2) and (4.3) for Example 4.2 with c = 1/4.

α Nt N Errorp Erroru CPU (s)

Method (4.2)

1500 40 2.4613e-05 1.8174e-05 23min 6s

0.3 3000 10 7.7798e-03 4.6070e-03 4h 23min

5000 30 7.9710e-05 5.8093e-05 43h 36min

2000 30 6.2330e-05 5.7504e-05 41min 43s

0.7 3000 20 3.2666e-04 2.9458e-04 4h 32min

6000 15 1.0721e-03 9.3046e-04 47h 24min

Method (4.3)

1500 40 2.4566e-05 1.8222e-05 12s

0.3 3000 10 7.7799e-03 4.6080e-03 14s

5000 30 7.9764e-05 5.8091e-05 54s

2000 30 6.2330e-05 5.7504e-05 6s

0.7 3000 20 3.2666e-04 2.9458e-04 7s

6000 15 1.0721e-03 9.3046e-04 18s

Table 13: α-robustness of (4.3) for Example 4.2 with c = ±1/4.

c α = 0.9 α = 0.95 α = 0.99 α = 0.995

1/4 Errorp 2.1915e-06 1.4302e-06 3.4979e-07 1.7697e-07

Erroru 1.6673e-05 1.0898e-05 2.6945e-06 1.3763e-06

-1/4 Errorp 2.2249e-06 1.4520e-06 3.5527e-07 1.8008e-07

Erroru 1.6848e-05 1.1011e-05 2.7222e-06 1.3903e-06
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Table 14: Errors and spatial convergence rates of (4.7) for Example 4.2 with c = 1/4.

α N Errorp Erroru Ratep Rateu

0.3 24 1.9228e-02 2.9200e-02 — —

48 4.7933e-03 7.2927e-03 2.0041 2.0014

96 1.1975e-03 1.8232e-03 2.0010 1.9999 ≈ 2

192 2.9935e-04 4.5633e-04 2.0001 1.9983

0.5 24 1.7811e-02 2.9180e-02 — —

48 4.4401e-03 7.2872e-03 2.0041 2.0015

96 1.1092e-03 1.8211e-03 2.0010 2.0005 ≈ 2

192 2.7724e-04 4.5512e-04 2.0003 2.0004

0.7 24 1.6028e-02 2.9162e-02 — —

48 3.9957e-03 7.2826e-03 2.0041 2.0016

96 9.9819e-04 1.8197e-03 2.0010 2.0006 ≈ 2

192 2.4947e-04 4.5455e-04 2.0004 2.0011

Table 15: Comparisons of (4.3) and (4.7) for Example 4.2 with (Nt, c) = (500, 1/4).

α N Errorp Erroru CPU (s)

Method (4.3)

40 1.5174e-05 1.6568e-05 7s

0.4 60 4.4933e-06 3.0085e-06 8s

100 5.8798e-07 1.9938e-06 9s

40 1.4224e-05 1.5770e-05 7s

0.6 50 5.7209e-06 5.9632e-06 8s

80 8.7472e-07 3.5406e-06 8s

Method (4.7)

1000 1.0544e-05 1.4771e-05 35s

0.4 1500 4.6241e-06 5.4875e-06 1min 18s

4000 6.0327e-07 1.3179e-06 10min 21s

800 1.4953e-05 2.2484e-05 25s

0.6 2000 2.2325e-06 1.6333e-06 2min 16s

3500 7.2200e-07 2.8894e-06 7min 17s

5. Conclusions

We present a fast fourth-order compact BCFD method for the time-fractional react-

ion-diffusion equations with variably diffusion coefficient and initial weak singularity.

For general reaction (positive or negative), and discretization on staggered uniform

spatial meshes and graded temporal meshes, an α-robust unconditional stability and

optimal-order sharp error analysis are rigorously analyzed. This seems to be the first

paper on such analysis of fast high-order finite difference methods. Finally, some nu-

merical experiments are tested to verify the effectiveness, efficiency and robustness of

the developed method. Meanwhile, a fast compact BCFD method for Neumann bound-
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ary conditions is also developed and tested, numerical results show that the method is

also fourth-order accurate in space and (2− α)-th order accurate in time. However, up

to now stability and error analysis are still lack.
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