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Abstract. In this work, we consider Richardson extrapolation of the Euler scheme

for backward stochastic differential equations (BSDEs). First, applying the Adomian
decomposition to the nonlinear generator of BSDEs, we introduce a new system

of BSDEs. Then we theoretically prove that the solution of the Euler scheme for

BSDEs admits an asymptotic expansion, in which the coefficients in the expansions
are the solutions of the system. Based on the expansion, we propose Richardson

extrapolation algorithms for solving BSDEs. Finally, some numerical tests are carried

out to verify our theoretical conclusions and to show the stability, efficiency and high
accuracy of the algorithms.
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1. Introduction

Let (Ω,F ,F,P) be a complete filtered probability space with F = {Ft}0≤t≤T being

the natural filtration generated by a standard d1-dimensional Brownian motion Wt =
(W 1

t ,W
2
t , · · · ,W

d1
t )⊤, 0 ≤ t ≤ T . We consider the following BSDE that is defined on

(Ω,F ,F,P):

Yt = ϕ(XT ) +

∫ T

t
f(s,Xs, Ys, Zs) ds−

∫ T

t
Zs dWs, (1.1)

where T is a deterministic terminal time, ϕ : Rd −→ R
q and f : [0, T ] × R

d × R
q ×

R
q×d1 −→ R

q are the terminal condition and the generator of the BSDE (1.1), respec-

tively. Note that the stochastic integral with respect to Wt is of Itô’s type, and Xt is

a diffussion process. In this paper, we only consider the case where

Xt = X0 +

∫ t

0
b(s,Xs) ds+

∫ t

0
σ(s,Xs) dWs, 0 ≤ t ≤ T, (1.2)
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where the functions b : [0, T ] × R
d −→ R

d and σ : [0, T ] × R
d −→ R

d×d1 are called

the drift and the diffussion coefficients of the SDE (1.2). A pair of processes (Yt, Zt)

is called an L2-adapted solution of (1.1) if it is Ft-adapted, square integrable, and

satisfies the BSDE (1.1).

In 1990, the existence and uniqueness of the solution of BSDEs are proved by Par-

doux and Peng [27]. Since then, BSDEs becomes an important tool for formulating

many problems in various important areas such as mathematical finance, stochastic

optimal control, risk measure, game theory, and so on (see, e.g., [11, 25, 28, 31] and

references therein).

As it is often difficult to solve BSDEs analytically, even for the linear BSDEs, numer-

ical methods have become popular tools for solving BSDEs. In recent years, great ef-

forts have been made for designing efficient numerical schemes for BSDEs and forward

backward stochastic differential equations (FBSDEs). There are two main types of nu-

merical schemes: the first one is based on numerical solution of a parabolic PDE which

is related to a FBSDEs [10,24], while the second type of schemes focus on discretizing

FBSDEs directly [3, 5, 9, 17, 23, 32, 37]. From the temporal discretization viewpoint,

popular strategies include Euler-type methods [14,15,35], θ-schemes [33,39], Runge-

Kutta schemes [8], multistep schemes [7,13,38,40,41], and strong stability preserving

multistep (SSPM) schemes [12], to name a few. For fully coupled FBSDEs, there ex-

ists only few numerical studies and satisfactory results [26, 38]. We mention the work

in [38], where a class of multistep type schemes are proposed, which turns out to be

effective in obtaining highly accurate solutions of FBSDEs, and the work in [34], where

the classical deferred correction (DC) method is adopted to design highly accurate nu-

merical methods for fully coupled FBSDEs.

Our objective in this paper is to present a theoretical analysis for the Richardson

extrapolation (RE) of the numerical solutions of the Euler scheme for BSDEs. It is well

known that the extrapolation method, which was established by Richardson [30], is

an efficient procedure for increasing the accuracy of approximations of many problems

in numerical analysis. The effectiveness of this method relies heavily on the existence

of an asymptotic expansion for the error of the numerical method which is used for

the extrapolation procedure. The applications of RE to ordinary differential equa-

tions (ODEs) based on one-step schemes, e.g., Runge-Kutta methods are described,

for example in [6, 16]. In addition, this method has been well demonstrated in its

applications to the finite element and the mixed finite element methods for elliptic

partial differential equations [4], Sobolev- and viscoelasticity-type equations [21], par-

tial integro-differential equations [22], Fredholm and Volterra integral equations of

the second kind [19], Volterra integro-differential equations [36], and to collocation

methods in [20], etc..

The effectiveness and the high accuracy of Richardson extrapolation motivate us to

use it to improve the accuracy of the solutions of the Euler scheme for BSDEs. To this

end, we first theoretically prove that the solutions of the Euler scheme for BSDEs admit

asymptotic expansions where the coefficients in the expansions satisfy a specific BSDEs

system. To the best of our knowledge, such theoretical results are new in literature.
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Then based on the expansions, we adopt the Aitken-Neville algorithm to present our

Richardson extrapolation of Euler methods (RE-Euler, for short) for solving BSDEs,

where three kinds of step-number sequences named Romberg, Bulirsch and harmonic

sequences are in use for obtaining high-order RE-Euler methods. Finally, numerical

tests are given to verify our theoretical results and to demonstrate that our RE-Euler

methods 1) enjoy K-order convergence in time discretization for solving BSDEs for

1 ≤ K ≤ 5; 2) are stable and more efficient than the multistep schemes proposed

in [38].

We in this work mainly focus on analyzing the asymptotic error expansions of the

Euler scheme for solving BSDEs. The main contributions of this paper are as follows:

• Applying the Adomian decomposition to the nonlinear generator of BSDEs, we

introduce a new system of BSDEs.

• We theoretically prove that the solution of the Euler scheme for BSDEs admits an

asymptotic expansion, in which the coefficients in the expansions are the solu-

tions of the new system of BSDEs.

• Based on the expansion, we propose Richardson extrapolation algorithms for

solving BSDEs.

• Our numerical tests verify our theoretical conclusions, and show that the RE-Euler

methods are easy in use, stable, very efficient and high accurate.

The rest of the paper is organized as follows. In Section 2, we recall the Ado-

mian decomposition and the Richardson extrapolation method in brief. We present the

asymptotic error expansions of the solutions of the Euler scheme for BSDEs in Section 3.

The construction of the RE-Euler algorithms for BSDEs is presented in Section 4. And

in Section 5, numerical tests are carried out to support the theoretical results. Finally,

some concluding remarks are given in Section 6.

2. Preliminaries

2.1. Nonlinear Feynman-Kac formula

Let u ∈ C1,2([0, T ] × R
d;Rq) be the solution to the parabolic partial differential

equation (PDE)

L0u(t, x) + f
(
t, x, u(t, x),∇xu(t, x)σ(t, x)

)
= 0, (t, x) ∈ [0, T )× R

d (2.1)

with the terminal condition u(T, x) = ϕ(x). Here Ck1,k2 refers to the set of functions

g(t, x) with continuous partial derivatives up to k1 with respect to t, and up to k2 with

respect to x. L0 is a second order differential operator defined by

L0 :=
∂

∂t
+

1

2

d∑

i,j=1

d1∑

l=1

(σilσjl)(t, x)
∂2

∂xi∂xj
+

d∑

i=1

bi(t, x)
∂

∂xi
. (2.2)
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In 1991, Peng [29] proved that under certain regularity conditions, the solution u of

the PDE (2.1) can be expressed as

u(t,Xt) = Yt, ∇xu(t,Xt)σ(t,Xt) = Zt, t ∈ [0, T ). (2.3)

The representation (2.3) is known as the nonlinear Feynman-Kac formula.

2.2. The diffusion process generator

Definition 2.1. Let Xt be a diffusion process in R
d satisfying (1.2). Then the generator

Dx
t of Xt on g : [0, T ] ×R

d is defined by

Dx
t g(t, x) = lim

s↓t

E
x
t [g(s,Xs)]− g(t, x)

s− t
, x ∈ R

d, (2.4)

if the limit exists, where E
x
t [·] is the conditional expectation E[·|Ft,Xt = x] for (t, x) ∈

[0, T ]× R
d.

Note that Dx
t g(t, x) = L0g(t, x) when g ∈ C1,2([0, T ] × R

d). By Definition 2.1, Itô’s

formula and the tower rule of conditional expectations, we have the following lemma.

Lemma 2.1 ([38]). Let t ∈ [0, s] be a fixed time. If

g ∈ C1,2
b

(
[0, T ]× R

d
)
, E

x
t

[
L0g(s,Xs)

]
< +∞,

then for s ∈ [t, T ) we have the identity

dEx
t [g(s,Xs)]

ds
= E

x
t

[
L0g(s,Xs)

]
.

Proof. By Definition 2.1, we have

L0g(s,Xs) = lim
r↓s

E
Xs
s [g(r,Xr)]− g(s,Xs)

r − s
. (2.5)

Taking the conditional expectation E
x
t [·] on both sides of (2.5), we have

E
x
t

[
L0g(s,Xs)

]
= E

x
t

[

lim
r↓s

E
Xs
s [g(r,Xr)]− g(s,Xs)

r − s

]

. (2.6)

Note that we can exchange the order of the limit and the conditional expectation in

(2.6) on account of the condition g ∈ C1,2
b ([0, T ]× R

d). Then we have

E
x
t [L

0g(s,Xs)] = E
x
t

[

lim
r↓s

E
Xs
s [g(r,Xr)]− g(s,Xs)

r − s

]

= lim
r↓s

E
x
t [E

Xs
s [g(r,Xr)]]− E

x
t [g(s,Xs)]

r − s

= lim
r↓s

E
x
t [g(r,Xr)]− E

x
t [g(s,Xs)]

r − s

=
dEx

t [g(s,Xs)]

ds
. (2.7)

The proof is complete.
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As a direct corollary of Lemma 2.1, we have

Corollary 2.1. If g ∈ Ck,2k
b ([0, T ]×R

d) and E
x
t [(L

0)(k)g(s,Xs)] < +∞, then for t ∈ [0, s]
we have

dkEx
t [g(s,Xs)]

dsk
= E

x
t

[
(L0)(k)g(s,Xs)

]
,

where (L0)(k) = L0 ◦ · · · ◦ L0
︸ ︷︷ ︸

k times

.

2.3. Adomian decomposition

Let G : X → Y be a nonlinear operator, where X and Y are two Banach spaces,

and u ∈ X have the series form u =
∑∞

j=0 uj. Then Gu can be decomposed into an

infinite series of the form

Gu =
∞∑

j=0

AG
j , (2.8)

where AG
j are the so-called Adomian polynomials of u0,u1, · · · ,uj and are calculated

by

AG
j =

1

j!

[

dj

dλj
G(

∞∑

i=0

λi
ui)

]

λ=0

, j = 0, 1, 2, . . . . (2.9)

Note that the polynomials AG
j are generated for the nonlinearity, so that AG

j depends

only on u0,u1, · · · ,uj for j ≥ 0. We call (2.8) the Adomian decomposition of Gu. The

Adomian decomposition was proposed by Adomian [1,2] initially with the aims to solve

frontier problems, linear and nonlinear, in physics, biology and chemical reactions,

etc.. To show the use of the Adomian decomposition in solving nonlinear problems, we

choose the nonlinear equation as

Gu = Lu+ Fu = 0, (2.10)

where Lu is the linear term, Fu is the nonlinear term, and u = (u, v).

Assume the inverse L−1 of the linear operator L exist. Taking L−1 in both sides of

(2.10) gives

u = −L−1Fu. (2.11)

Assume

u(t) =

∞∑

j=0

uj(t) =





∞∑

j=0

uj(t),

∞∑

j=0

vj(t)



 .

Then by using the Adomian decomposition to Fu = F (t,u(t)), we have

∞∑

j=0

uj = −L−1
∞∑

j=0

AF
j , (2.12)
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where AF
j are calculated by

AF
j (t) =

1

j!

[

dj

dλj
F

(

t,

∞∑

i=0

λiui(t),

∞∑

i=0

λivi(t)

)]

λ=0

, j = 0, 1, 2, . . . .

Here we list the first few Adomian polynomials AF
j (t), j = 0, 1, 2, 3 which are

AF
0 (t) = F0,0,

AF
1 (t) = u1(t)F1,0 + v1(t)F0,1,

AF
2 (t) = u2(t)F1,0 + v2(t)F0,1 +

(
u21(t)/2!

)
F2,0

+ u1(t)v1(t)F1,1 +
(
v21(t)/2!

)
F0,2,

AF
3 (t) = u3(t)F1,0 + v3(t)F0,1 + u1(t)u2(t)F2,0

+
[
u1(t)v2(t) + u2(t)v1(t)

]
F1,1 + v1(t)v2(t)F0,2

+
(
u31(t)/3!

)
F3,0 +

(
u21(t)/2!

)
v1(t)F2,1

+ u1(t)
(
v21(t)/2!

)
F1,2 +

(
v31(t)/3!

)
F0,3,

(2.13)

where Fµ,ν = (∂µ+ν/∂uµ∂vν)F (t, u0(t), v0(t)). It is worthy of noting that in (2.13),

AF
0 (t) = F (t, u0(t), v0(t)), and for j ≥ 1, AF

j is linear with respect to uj and vj .
Given u0, we solve the uj (j = 1, 2, . . .) by

uj = −L−1AF
j−1. (2.14)

We call the procedure (2.12)-(2.14) the Adomian decomposition method for solving

the nonlinear problem (2.10).

2.4. Richardson extrapolation

Consider a problem with exact solution y(t), where t ∈ [0, T ]. Let ỹ(t;∆t) be a nu-

merical solution of y(t) on a uniform grid πN := {tn | tn = n∆t, ∆t = T/N, n =
0, 1, . . . , N}, where ∆t is the step size, N is a positive integer. Assume that the ex-

act solution y(t) is smooth enough on the domain [0, T ] such that ỹ(t;∆t) admits the

asymptotic expansion on πN

ỹ(t;∆t)− y(t) = e1(t)∆t+ · · · + eK−1(t)(∆t)K−1 + EK(t)(∆t)K , (2.15)

where the ej(t) are independent of ∆t with ej(t0) = 0, and EK(t) is bounded.

Now we choose a sequence of positive integers

1 = N0 < N1 < N2 < · · · , (2.16)

and define the corresponding uniform grids πN,i (i = 0, 1, . . . ,K − 1) by

πN,i =

{

tn | tn = n∆ti, ∆ti =
T

N ·Ni
=

∆t

Ni
, n = 0, 1, . . . , N ·Ni

}

. (2.17)
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Note that πN,0 = πN , and all the πN,i, i = 0, 1, . . . ,K − 1 have the common grid points

in πN,0. Then for any tn ∈ πN,0 (sometimes we also say n ∈ πN,0 which means n is

a nonnegative integer such that tn ∈ πN,0), and 1 ≤ p ≤ m ≤ K − 1, by (2.15), we

have

ỹ(tn;∆ti)− y(tn) = e1(tn)∆ti + · · ·+ ep(tn)(∆ti)
p +O

(
(∆ti)

p+1
)
. (2.18)

By multiplying αi ∈ R on both sides of (2.18) and adding the derived equations up

from i = m− p to m, we obtain

m∑

i=m−p

αiỹ(tn;∆ti)−

(
m∑

i=m−p

αi

)

y(tn)

=
m∑

i=m−p

p
∑

j=1

αiej(tn)(∆ti)
j +O

(

(∆tm−p)
p+1

m∑

i=m−p

αi

)

=

p
∑

j=1

(
m∑

i=m−p

αi

N j
i

)

ej(tn)(∆t)j +O

(

(∆t)p+1
m∑

i=m−p

αi

)

. (2.19)

Since Ni 6= Nj in (2.16) for i 6= j, the system of equations (2.20)








1 · · · 1

N−1
m−p · · · N−1

m
...

. . .
...

N−p
m−p · · · N−p

m















αm−p

αm−p+1
...

αm








=








1
0
...

0








(2.20)

has a unique solution α = (αm−p, αm−p+1, · · · , αm)⊤. Then from (2.19), we have

m∑

i=m−p

αiỹ(tn;∆ti)− y(tn) = O
(
(∆t)p+1

)
. (2.21)

Let T n
i,0 = ỹ(tn;∆ti), then we define T n

m,p =
∑m

i=m−p αiT
n
i,0, 1 ≤ p ≤ m ≤ K − 1. All

T n
m,0, 0 ≤ m ≤ K − 1 and T n

m,p, 1 ≤ p ≤ m ≤ K − 1 can be arranged in the form of

lower triangular matrix

T n
0,0

T n
1,0 T n

1,1

T n
2,0 T n

2,1 T n
2,2

...
...

...
. . .

T n
K−1,0 T n

K−1,1 T n
K−1,2 · · · T n

K−1,K−1

(2.22)

The above algorithm is called the Richardson extrapolation. And we call T n
m,p, 1 ≤ p ≤

m ≤ K − 1 the extrapolation solutions. It is worthy of mentioning that all the values

T n
·,p located in the p-th column in (2.22) are the approximations to the exact solution
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y(tn) with error O((∆t)p+1). In particular, the entry T n
K−1,K−1 is an approximation to

y(tn) with error O((∆t)K). We can recursively realize the Richardson extrapolation by

the following Aitken-Neville algorithm:

T n
m,0 = ỹ(tn;∆tm),

T n
m,p = T n

m,p−1 +
T n
m,p−1 − T n

m−1,p−1

Nm/Nm−p − 1
,

1 ≤ p ≤ m ≤ K − 1. (2.23)

Note that different Ni, i = 0, 1, . . . in (2.16) leads to different step-number sequences.

Here we list three frequently used sequences.

1) Romberg sequence: Ni = 2i, i = 0, 1, . . . .

1, 2, 4, 8, 16, 32, 64, . . . .

2) Bulirsch sequence: Ni =







1, i = 0,

2(i+1)/2, i is odd,

1.5 · 2i/2, i is even.

1, 2, 3, 4, 6, 8, 12, . . . .

3) Harmonic sequence: Ni = i+ 1, i = 0, 1, . . . .

1, 2, 3, 4, 5, 6, 7, . . . .

Note that the above three sequences have the same first two elements 1 and 2. For

i = 2, 3, Bulirsch and harmonic sequences have the same elements 3 and 4 which are

both smaller than the ones of Romberg sequence. And for i ≥ 4, among the above

three step-number sequences, the Ni in the Romberg sequence is the largest one and

the Ni in the harmonic sequence is the smallest one. In Section 5, we will compare the

efficiency among the three step-number sequenses.

3. Asymptotic expansions of the Euler scheme for BSDEs

We outline this section as follows. In Subsection 3.1, we overview the Euler scheme

for BSDEs. Then the asymptotic expansions of the solutions by the Euler scheme are

carefully derived in Subsection 3.2, which is the key to investigate the extrapolation ap-

proximations. Without loss of generality, we only consider the case of one-dimensional

BSDEs (i.e., d = q = 1). However, we remark that all results obtained in the sequel

also hold for multidimensional BSDEs.
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3.1. The Euler scheme for BSDEs

To begin with, we introduce a regular time partition on the time interval [0, T ] as

πN :=

{

tn : tn = n∆t, n = 0, 1, . . . , N, ∆t =
T

N

}

, (3.1)

where N is a positive integer. Then we introduce some notations. By E
x
t [·] we denote

the conditional expectation E[·|Ft,Xt = x] for (t, x) ∈ [0, T ] × R, and by ∆Wr,s the

increment Ws −Wr of the Brownian motion Wt for s ≥ r. For simplicity, we represent

Wtn+1
−Wtn by ∆Wn+1 for 0 ≤ n ≤ N − 1. Note that the increment ∆Wn+1 admits the

Gaussian distribution with mean zero and variance ∆t.
It follows from (1.1) that

Ytn = Ytn+1
+

∫ tn+1

tn

fs ds−

∫ tn+1

tn

Zs dWs, (3.2)

where fs = f(s,Xs, Ys, Zs). For fixed x ∈ R, taking the conditional expectation E
x
tn [·]

on (3.2), we obtain

Ytn = E
x
tn [Ytn+1

] +

∫ tn+1

tn

E
x
tn [fs] ds. (3.3)

By multiplying ∆Wn+1 on both sides of the Eq. (3.2), taking conditional expectation

E
x
tn [·] and then using the isometry property of Itô integral, we obtain

0 = E
x
tn [Ytn+1

∆Wn+1] +

∫ tn+1

tn

E
x
tn [fs∆Wtn,s] ds−

∫ tn+1

tn

E
x
tn [Zs] ds. (3.4)

For the temporal semi-discretizations, we use (Y n, Zn) to represent the approx-

imation value of the solution (Yt, Zt) of the BSDE (1.1) at the time level t = tn,

n = N,N − 1, . . . , 0. By simply using the left rule to the integrals in (3.3) and (3.4),

we obtain the following Euler scheme, one special case of the generalized θ-scheme

proposed in [39].

Scheme 3.1 (Euler Scheme). Given Y N , for n = N − 1, . . . , 0, solve random variables

Y n and Zn by

Y n = E
x
tn [Y

n+1] + ∆tf(tn, x, Y
n, Zn),

∆tZn = E
x
tn [Y

n+1∆Wn+1].
(3.5)

We call {(Y n, Zn)}N−1
n=0 with the terminal condition Y N the Euler solution of the

BSDE (1.1).

Now we define the local truncation errors Rn
y and Rn

z of Scheme 3.1 as

{

Rn
y = Ytn − E

x
tn [Ytn+1

]−∆tf(tn, x, Ytn , Ztn),

Rn
z = ∆tZtn − E

x
tn [Ytn+1

∆Wn+1].
(3.6)
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Error estimates were presented in [39] for the above temporal semidiscrete scheme.

It was shown that E[|Rn
y |] = O((∆t)2) and E[|Rn

z |] = O((∆t)2) for sufficiently small

time step ∆t under certain regularity conditions on f and ϕ. It was proved in [39]

that the Euler Scheme 3.1 possesses convergence rate of 1. In this paper, we pay

attention to improve the accuracy of the Euler solutions for BSDEs by the Richardson

extrapolation method. To this end, we shall give the asymptotic error expansions of

the Euler solutions which are the theoretical basis for our discussions of extrapolation

methods.

3.2. Asymptotic expansions of Scheme 3.1

The purpose of this subsection is to deduce the asymptotic expansion of the Eu-

ler Scheme 3.1. To this end, we first derive the asymptotic expansions of the trun-

cation errors Rn
y and Rn

z of the Euler scheme in Subsection 3.2.1. Then in Subsec-

tion 3.2.3, we define two processes Y n,[K] and Zn,[K] with given processes e
y,[j]
t and

e
z,[j]
t , 1 ≤ j ≤ K, and introduce two truncation errors R

n,[K]
y and R

n,[K]
z , which have

the expansions (3.40) and (3.41), respectively. When the e
y,[j]
t and e

z,[j]
t are defined

by the BSDE system (3.16) defined in Subsection 3.2.2, the R
n,[K]
y and R

n,[K]
z have the

estimates given in Lemma 3.2. Finally by using the Euler scheme and Lemma 3.2, we

obtain the asymptotic expansion of the Euler scheme in Theorem 3.1. To this end, we

shall need Assumption 3.1 below.

Assumption 3.1. The functions ϕ and f in (1.1) are bounded and smooth enough with

bounded derivatives.

3.2.1. Asymptotic expansions of the truncation errors of the Euler scheme

For the sake of simplicity, we define the functions

U(t) = E
x
tn [Yt], V (t) = E

x
tn [Zt], Ū(t) = E

x
tn [Yt∆Wtn,t]. (3.7)

Note that U, V and Ū depend on t, tn and x.

Under certain regularity conditions on f and ϕ in (1.1), the Feynman-Kac formula

(2.3) implies that U, V and Ū are all deterministic functions satisfying

U
′

(t) = −E
x
tn [ft], Ū(tn) = 0, Ū

′

(tn) = V (tn), (3.8)

and by taking the j-th derivative with respect to t on both sides of the first and the last

equation in (3.7), and taking the limit t → tn, one obtains

U (j)(tn) =
djEx

tn [Yt]

dtj

∣
∣
∣
∣
t=tn

, (3.9)

Ū (j)(tn) =
djEx

tn [Yt∆Wtn,t]

dtj

∣
∣
∣
∣
t=tn

(3.10)

with j = 1, 2, . . . ,K + 1, where K is a positive integer.



Richardson Extrapolation of the Euler Scheme for BSDEs 11

Lemma 3.1. Under Assumption 3.1, the local truncation errors Rn
y and Rn

z have the

asymptotic expansions

Rn
y =

K+1∑

j=2

αtn,j(∆t)j +O
(
(∆t)K+2

)
,

Rn
z =

K+1∑

j=2

βtn,j(∆t)j +O
(
(∆t)K+2

)
,

(3.11)

where αtn,j = −U (j)(tn)/j! and βtn,j = −Ū (j)(tn)/j!.

Proof. By (3.6) and (3.7), we obtain

Rn
y = U(tn)− U(tn+1)−∆tf

(
tn, x, U(tn), V (tn)

)
, (3.12)

Rn
z = ∆tV (tn)− Ū(tn+1). (3.13)

Then by using Taylor’s expansions to U, V and Ū at t = tn, and the relations in (3.8),

we deduce

Rn
y = −

K+1∑

j=1

U (j)(tn)

j!
(∆t)j −∆tf

(
tn, x, U(tn), V (tn)

)
+O

(
(∆t)K+2

)

= −
K+1∑

j=2

U (j)(tn)

j!
(∆t)j +O

(
(∆t)K+2

)
, (3.14)

Rn
z = ∆tV (tn)−





K+1∑

j=1

Ū (j)(tn)

j!
(∆t)j



+O
(
(∆t)K+2

)

= −





K+1∑

j=2

Ū (j)(tn)

j!
(∆t)j



+O
(
(∆t)K+2

)
. (3.15)

The proof is complete.

3.2.2. A new system of BSDEs

To obtain our asymptotic expansions of the Euler solution of the BSDE (1.1), we in-

troduce Ft-adapted stochastic processes (e
y,[j]
t , e

z,[j]
t ), j = 1, 2, . . . ,K, which are the

solutions of the BSDEs

e
y,[j]
t =

∫ T

t

(
λy,[j]
s + λy

se
y,[j]
s + λz

se
z,[j]
s

)
ds

−

∫ T

t

(
ez,[j]s + λz,[j]

s

)
dWs, j = 1, 2, . . . ,K, ∀t ∈ [0, T ], (3.16)
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where

λy
s =

∂f

∂y
(s,Xs, Ys, Zs), λz

s =
∂f

∂z
(s,Xs, Ys, Zs),

λy,[j]
s =

Y <j+1>
s

(j + 1)!
+Bj(s)− λy

se
y,[j]
s − λz

se
z,[j]
s +

j
∑

l=2

1

l!

(
ey,[j−l+1]
s

)<l>
,

λz,[j]
s = −

Ȳ <j+1>
s

(j + 1)!
−

j
∑

l=2

1

l!

(
ēy,[j−l+1]
s

)<l>
,

Bj(s) =
1

j!

[

dj

dλj
f

(

s,Xs, Ys +
K∑

i=1

λiey,[i]s , Zs +
K∑

i=1

λiez,[i]s

)]

λ=0

,

(3.17)

and
Y <j+1>
s = (L0)(j+1)u(s,Xs),

Ȳ <j+1>
s = (L0)(j+1)ũ(s,∆Wt,s),
(
ey,[j−l+1]
s

)<l>
= (L0)(l)u[j−l+1](s,Xs),

(
ēy,[j−l+1]
s

)<l>
= (L0)(l)ũ[j−l+1](s,∆Wt,s).

(3.18)

Here

ũ(s,∆Wt,s) = u(s,Xs)∆Wt,s,

ũ[j−l+1](s,∆Wt,s) = u[j−l+1](s,Xs)∆Wt,s,

L0 is defined by (2.2), and (L0)(k) = L0 ◦ · · · ◦ L0
︸ ︷︷ ︸

k times

, where the u : [0, T ] × R → R is the

solution of the PDE

L0u(t, x) + f
(
t, u(t, x),∇xu(t, x)

)
= 0, (t, x) ∈ [0, T )× R

with the terminal condition u(T, x) = ϕ(x), and u[j−l+1] : [0, T ]×R → R, 2 ≤ l ≤ j ≤ K
are the solutions of the PDEs

L0u[j−l+1](t, x) + λ
y,[j−l+1]
t − λz

tλ
z,[j−l+1]
t + λy

tu
[j−l+1](t, x)

+ λz
t∇xu

[j−l+1](t, x) = 0, (t, x) ∈ [0, T ) ×R

with the terminal conditions u[j−l+1](T, x) = 0.

Remark 3.1. Let ẽ
z,[j]
s = e

z,[j]
s + λ

z,[j]
s , then (3.16) can be written as

e
y,[j]
t =

∫ T

t

(
λy,[j]
s − λz

sλ
z,[j]
s + λy

se
y,[j]
s + λz

s ẽ
z,[j]
s

)
ds

−

∫ T

t
ẽz,[j]s dWs, j = 1, 2, . . . ,K, ∀t ∈ [0, T ]. (3.19)
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Note that the BSDEs (3.19) are linear with unknown (e
y,[j]
t , ẽ

z,[j]
t ) and the unique solv-

ability of (3.19) can be guaranteed by Assumption 3.1 which implies that the BSDEs

(3.16) have the unique solutions (e
y,[j]
t , e

z,[j]
t ), j = 1, 2, . . . ,K.

Taking the conditional expectation E
x
t [·] on Y <j+1>

s , Ȳ <j+1>
s , (e

y,[j−l+1]
s )<l> and

(ē
y,[j−l+1]
s )<l> defined in (3.18) for t ≤ s ≤ T . Then by Corollary 2.1, we have the

identities

E
x
t

[
Y <j+1>
s

]
=

dj+1
E
x
t [Ys]

dtj+1
,

E
x
t

[
Ȳ <j+1>
s

]
=

dj+1
E
x
t [Ys∆Wt,s]

dtj+1
,

E
x
t

[
(ey,[j−l+1]

s )<l>
]
=

dlEx
t [e

y,[j−l+1]
s ]

dtl
,

E
x
t

[
(ēy,[j−l+1]

s )<l>
]
=

dlEx
t [e

y,[j−l+1]
s ∆Wt,s]

dtl
.

(3.20)

3.2.3. Asymptotic expansions of the Euler scheme

Now we define Y n,[K] and Zn,[K] by

Y n,[K] = Y n −
K∑

j=1

e
y,[j]
tn (∆t)j , Zn,[K] = Zn −

K∑

j=1

e
z,[j]
tn (∆t)j . (3.21)

By the Euler scheme (3.5), we have the two identities







Y n,[K] = E
x
tn

[
Y n+1,[K]

]
+∆tf [K]

(
tn, x, Y

n,[K], Zn,[K]
)
,

∆tZn,[K] = E
x
tn

[
Y n+1,[K]∆Wn+1

]

+
K∑

j=1

(
Ēy,[j](tn+1)−∆tEz,[j](tn)

)
(∆t)j ,

(3.22)

where

∆tf [K](tn, x, y, z) = ∆tf

(

tn, x, y +
K∑

j=1

Ey,[j](tn)(∆t)j , z +
K∑

j=1

Ez,[j](tn)(∆t)j

)

+

K∑

j=1

(
Ey,[j](tn+1)− Ey,[j](tn)

)
(∆t)j , (3.23)

and
Ey,[k](t) = E

x
tn

[
e
y,[k]
t

]
,

Ez,[k](t) = E
x
tn

[
e
z,[k]
t

]
,

Ēy,[k](t) = E
x
tn

[
e
y,[k]
t ∆Wtn,t

]
,

k = 1, 2, . . . ,K. (3.24)
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We define local truncation errors R
n,[K]
y and R

n,[K]
z as







R
n,[K]
y = Ytn − E

x
tn [Ytn+1

]−∆tf [K](tn, x, Ytn , Ztn),

R
n,[K]
z = ∆tZtn − E

x
tn [Ytn+1

∆Wn+1]

−
K∑

j=1

(

E
x
tn

[
e
y,[j]
tn+1

∆Wn+1

]
−∆te

z,[j]
tn

)

(∆t)j ,

(3.25)

where (Yt, Zt) is the solution of the BSDE (1.1). Then we have the following Lemma 3.2.

Lemma 3.2. Let Assumption 3.1 hold, and (e
y,[j]
t , e

z,[j]
t ), j = 1, 2, . . . ,K, are the solutions

of BSDEs (3.16), then we have R
n,[K]
y = O((∆t)K+2) and R

n,[K]
z = O((∆t)K+2).

Proof. For t ∈ [tn, T ], by (3.19), we obtain

e
y,[j]
tn = e

y,[j]
t +

∫ t

tn

(
λy,[j]
s − λz

sλ
z,[j]
s + λy

se
y,[j]
s + λz

s ẽ
z,[j]
s

)
ds−

∫ t

tn

ẽz,[j]s dWs. (3.26)

For fixed x ∈ R, taking the conditional expectation E
x
tn [·] on (3.26), we obtain

e
y,[j]
tn = E

x
tn

[
e
y,[j]
t

]
+

∫ t

tn

E
x
tn

[
λy,[j]
s − λz

sλ
z,[j]
s + λy

se
y,[j]
s + λz

s ẽ
z,[j]
s

]
ds. (3.27)

By taking the derivative with respect to t on both sides of (3.27), and taking the limit

t → tn, one obtains

dEx
tn [e

y,[j]
t ]

dt

∣
∣
∣
∣
∣
t=tn

= −λ
y,[j]
tn + λz

tnλ
z,[j]
tn − λy

tne
y,[j]
tn − λz

tn ẽ
z,[j]
tn

= −λ
y,[j]
tn − λy

tne
y,[j]
tn − λz

tne
z,[j]
tn . (3.28)

Then, by (3.17) and (3.20), we deduce

dEx
tn [e

y,[j]
t ]

dt

∣
∣
∣
∣
∣
t=tn

=
−1

(j + 1)!

dj+1
E
x
tn [Yt]

dtj+1

∣
∣
∣
∣
t=tn

−Bj(tn)

−

j
∑

l=2

1

l!

dlEx
tn [e

y,[j−l+1]
t ]

dtl

∣
∣
∣
∣
∣
t=tn

. (3.29)

By multiplying ∆Wtn,t on both sides of the Eq. (3.26), taking conditional expectation

E
x
tn [·] and then using the isometry property of Itô integral, we have

−E
x
tn

[
e
y,[j]
t ∆Wtn,t

]
=

∫ t

tn

E
x
tn

[
(λy,[j]

s − λz
sλ

z,[j]
s + λy

se
y,[j]
s + λz

s ẽ
z,[j]
s )∆Wtn,s

]
ds

−

∫ t

tn

E
x
tn

[
ẽz,[j]s

]
ds. (3.30)
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Similarly, by (3.17) and (3.20), taking the derivative with respect to t on both sides of

(3.30), and taking the limit t → tn, we deduce

dEx
tn [e

y,[j]
t ∆Wtn,t]

dt

∣
∣
∣
∣
∣
t=tn

=
−1

(j + 1)!

dj+1
E
x
tn [Yt∆Wtn,t]

dtj+1

∣
∣
∣
∣
t=tn

+ e
z,[j]
tn −

j
∑

l=2

1

l!

dlEx
tn [e

y,[j−l+1]
t ∆Wtn,t]

dtl

∣
∣
∣
∣
∣
t=tn

. (3.31)

By (3.7), (3.24) and (3.25), we obtain

Rn,[K]
y = U(tn)− U(tn+1)−∆tf

(
tn, x, Y

[K]
tn , Z

[K]
tn

)

−
K∑

j=1

(
Ey,[j](tn+1)− Ey,[j](tn)

)
(∆t)j , (3.32)

Rn,[K]
z = ∆tV (tn)− Ū(tn+1)

−

K∑

j=1

(
Ēy,[j](tn+1)−∆tEz,[j](tn)

)
(∆t)j , (3.33)

where

Y
[K]
tn = Ytn +

K∑

j=1

Ey,[j](tn)(∆t)j ,

Z
[K]
tn = Ztn +

K∑

j=1

Ez,[j](tn)(∆t)j .

By using the Adomian decomposition to f(tn, x, Y
[K]
tn , Z

[K]
tn ) in (3.32), we deduce

f
(
tn, x, Y

[K]
tn , Z

[K]
tn

)
=

K∑

j=0

Bj(tn)(∆t)j +O
(
(∆t)K+1

)
, (3.34)

where Bj(tn) is calculated by

Bj(tn)(∆t)j =
1

j!

[

dj

dλj
f

(

tn,Xtn , Ytn +

K∑

i=1

λiEy,[i](tn)(∆t)i,

Ztn +
K∑

i=1

λiEz,[i](tn)(∆t)i
)]

λ=0

. (3.35)

Using Taylor expansions and (3.8)-(3.10), we deduce that

U(tn)− U(tn+1) = −
K+1∑

j=1

U (j)(tn)

j!
(∆t)j +O

(
(∆t)K+2

)
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= −
K+1∑

j=1

1

j!

djEx
tn [Yt]

dtj

∣
∣
∣
∣
t=tn

(∆t)j +O
(
(∆t)K+2

)
, (3.36)

∆tV (tn)− Ū(tn+1) = ∆tV (tn)−

K+1∑

j=1

Ū (j)(tn)

j!
(∆t)j +O

(
(∆t)K+2

)

= −

K+1∑

j=2

1

j!

djEx
tn [Yt∆Wtn,t]

dtj

∣
∣
∣
∣
t=tn

(∆t)j +O
(
(∆t)K+2

)
. (3.37)

By the definitions of Ey,[j], Ēy,[j] and Ez,[j] in (3.24), and using Taylor expansions again,

we obtain

Ey,[j](tn+1)− Ey,[j](tn)

=

K−j+1
∑

l=1

1

l!

(
Ey,[j]

)(l)
(tn)(∆t)l +O

(
(∆t)K−j+2

)

=

K−j+1
∑

l=1

1

l!

dlEx
tn [e

y,[j]
t ]

dtl

∣
∣
∣
∣
∣
t=tn

(∆t)l +O
(
(∆t)K−j+2

)
, (3.38)

Ēy,[j](tn+1)−∆tEz,[j](tn)

=

K−j+1
∑

l=1

(
1

l!

(
Ēy,[j]

)(l)
(tn)(∆t)l

)

−∆tEz,[j](tn) +O
(
(∆t)K−j+2

)

=

K−j+1
∑

l=1

dlEx
tn [e

y,[j]
t ∆Wtn,t]

dtl

∣
∣
∣
∣
∣
t=tn

(∆t)l −∆te
z,[j]
tn +O

(
(∆t)K−j+2

)
. (3.39)

Inserting (3.34), (3.36) and (3.38) into (3.32), then by (3.8), then let k = j+ l−1 and

using the constraint 1 ≤ j ≤ K, last let j = k, we deduce

Rn,[K]
y = −

K+1∑

j=2

1

j!

djEx
tn [Yt]

dtj

∣
∣
∣
∣
t=tn

(∆t)j −∆t
K∑

j=1

Bj(tn)(∆t)j

−

K∑

j=1

K−j+1
∑

l=1

1

l!

dlEx
tn [e

y,[j]
t ]

dtl

∣
∣
∣
∣
∣
t=tn

(∆t)j+l +O
(
(∆t)K+2

)

=

K∑

j=1

(

−
dEx

tn [e
y,[j]
t ]

dt

∣
∣
∣
∣
∣
t=tn

−
1

(j + 1)!

dj+1
E
x
tn [Yt]

dtj+1

∣
∣
∣
∣
t=tn

−Bj(tn)

−

j
∑

l=2

1

l!

dlEx
tn [e

y,[j−l+1]
t ]

dtl

∣
∣
∣
∣
∣
t=tn

)

(∆t)j+1 +O
(
(∆t)K+2

)
. (3.40)
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Similarly, inserting (3.37) and (3.39) into (3.33), then let k = j + l − 1 and using the

constraint 1 ≤ j ≤ K, last let j = k, we obtain

Rn,[K]
z = −

K+1∑

j=2

1

j!

djEx
tn [Yt∆Wtn,t]

dtj

∣
∣
∣
∣
t=tn

(∆t)j

−

K∑

j=1

(
K−j+1
∑

l=1

dlEx
tn [e

y,[j]
t ∆Wtn,t]

dtl

∣
∣
∣
∣
∣
t=tn

(∆t)l −∆te
z,[j]
tn

)

(∆t)j +O
(
(∆t)K+2

)

=

K∑

j=1

(

−
dEx

tn [e
y,[j]
t ∆Wtn,t]

dt

∣
∣
∣
∣
∣
t=tn

+ e
z,[j]
tn −

1

(j + 1)!

dj+1
E
x
tn [Yt∆Wtn,t]

dtj+1

∣
∣
∣
∣
t=tn

−

j
∑

l=2

1

l!

dlEx
tn [e

y,[j−l+1]
t ∆Wtn,t]

dtl

∣
∣
∣
∣
∣
t=tn

)

(∆t)j+1 +O
(
(∆t)K+2

)
. (3.41)

We observe that the coefficients of (∆t)j , j = 2, 3, . . . ,K+1 in (3.40) and (3.41) vanish

by (3.29) and (3.31), respectively. The proof is complete.

Now we state our asymptotic expansions results for the Euler scheme 3.1 in the

following theorem.

Theorem 3.1 (Asymptotic Expansions of the Euler Scheme). Under Assumption 3.1,

and if E[|η
y,[K+1]
tN

|2] = O((∆t)2K+2), then the numerical solutions Y n and Zn by the

Euler scheme 3.1 have the expansions

Y n = Ytn +

K∑

j=1

e
y,[j]
tn (∆t)j + η

y,[K+1]
tn , (3.42)

Zn = Ztn +
K∑

j=1

e
z,[j]
tn (∆t)j + η

z,[K+1]
tn (3.43)

with the estimate

E

[

|η
y,[K+1]
tn |2

]

+∆t
N−1∑

i=n

E

[

|η
z,[K+1]
tn |2

]

≤ C(∆t)2K+2, (3.44)

where (e
y,[j]
t , e

z,[j]
t ) are the solutions of the BSDEs (3.16), and C is a positive constant

depending only on T, f , and ϕ.

Proof. Let η
y,[K+1]
tn = Y n,[K] − Ytn and η

z,[K+1]
tn = Zn,[K] − Ztn , where Y n,[K] and

Zn,[K] are defined by (3.21). Then we have

Y n = Ytn +
K∑

j=1

e
y,[j]
tn (∆t)j + η

y,[K+1]
tn , (3.45)

Zn = Ztn +

K∑

j=1

e
z,[j]
tn (∆t)j + η

z,[K+1]
tn . (3.46)
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In the rest of the proof, we will go to estimate (η
y,[K+1]
tn , η

z,[K+1]
tn ).

1) The estimate of η
y,[K+1]
tn . For 0 ≤ n ≤ N − 1, by (3.22) and (3.25), we obtain

η
y,[K+1]
tn = E

x
tn

[
Y n+1,[K] − Ytn+1

]
+∆t

(
fn,[K] − f

[K]
tn

)
−Rn,[K]

y

= E
x
tn

[
η
y,[K+1]
tn+1

]
+∆tE

n,[K]
f −Rn,[K]

y , (3.47)

where

E
n,[K]
f = fn,[K] − f

[K]
tn ,

f
[K]
tn = f [K](tn,Xtn , Ytn , Ztn),

fn,[K] = f [K]
(
tn,Xtn , Y

n,[K], Zn,[K]
)
,

and f [K] is defined by (3.23). By Assumption 3.1 and (3.23), f [K] is uniformly

Lipschitz continuous in (y, z), and assume the associated Lipschitz constant is L.

Then we have
∣
∣η

y,[K+1]
tn

∣
∣ ≤

∣
∣E

x
tn

[
η
y,[K+1]
tn+1

]∣
∣+∆t

∣
∣E

n,[K]
f

∣
∣+
∣
∣Rn,[K]

y

∣
∣

≤
∣
∣E

x
tn

[
η
y,[K+1]
tn+1

]∣
∣+∆tL

(∣
∣η

y,[K+1]
tn

∣
∣+
∣
∣η

z,[K+1]
tn

∣
∣

)

+
∣
∣Rn,[K]

y

∣
∣. (3.48)

Using the inequalities

(a+ b)2 ≤ (1 + γ∆t)a2 +

(

1 +
1

γ∆t

)

b2,

(
m∑

n=1

an

)2

≤ m

m∑

n=1

a2n,

for any positive real number γ, we deduce
∣
∣η

y,[K+1]
tn

∣
∣2 ≤ (1 + γ∆t)

∣
∣E

x
tn

[
η
y,[K+1]
tn+1

]∣
∣2

+

(

1 +
1

γ∆t

)(

∆tL
(∣
∣η

y,[K+1]
tn

∣
∣+
∣
∣η

z,[K+1]
tn

∣
∣

)

+
∣
∣Rn,[K]

y

∣
∣

)2

≤ (1 + γ∆t)
∣
∣E

x
tn

[
η
y,[K+1]
tn+1

]∣
∣2

+ 3

(

1 +
1

γ∆t

)(

(∆tL)2
(∣
∣η

y,[K+1]
tn

∣
∣2 +

∣
∣η

z,[K+1]
tn

∣
∣2
)

+
∣
∣Rn,[K]

y

∣
∣2
)

= (1 + γ∆t)
∣
∣E

x
tn

[
η
y,[K+1]
tn+1

]∣
∣2

+
{

3(∆tL)2
(∣
∣η

y,[K+1]
tn

∣
∣2 +

∣
∣η

z,[K+1]
tn

∣
∣2
)

+ 3
∣
∣Rn,[K]

y

∣
∣2
}

+
1

γ

{

3∆tL2
(∣
∣η

y,[K+1]
tn

∣
∣2 +

∣
∣η

z,[K+1]
tn

∣
∣2
)}

+
3

γ∆t

∣
∣Rn,[K]

y

∣
∣2. (3.49)

2) The estimate of η
z,[K+1]
tn . By (3.22) and (3.25), we obtain

∆tη
z,[K+1]
tn = E

x
tn

[
(Y n+1,[K] − Ytn+1

)∆Wn+1

]
−Rn,[K]

z

= E
x
tn

[
η
y,[K+1]
tn+1

∆Wn+1

]
−Rn,[K]

z , (3.50)
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and we have

∣
∣η

z,[K+1]
tn

∣
∣ ≤

1

∆t

∣
∣E

x
tn

[
η
y,[K+1]
tn+1

∆Wn+1

]∣
∣+

1

∆t

∣
∣Rn,[K]

z

∣
∣. (3.51)

Then by using Hölder inequality and the inequality (a+b)2 ≤ (1+ǫ)a2+(1+1/ǫ)b2

for any positive real number ǫ, we obtain the inequality

∣
∣η

z,[K+1]
tn

∣
∣2 ≤ (1 + ǫ)

1

(∆t)2

∣
∣E

x
tn

[
η
y,[K+1]
tn+1

∆Wn+1

]∣
∣2

+

(

1 +
1

ǫ

)
1

(∆t)2
∣
∣Rn,[K]

z

∣
∣2. (3.52)

Then, by using
∣
∣E

x
tn

[
η
y,[K+1]
tn+1

∆Wn+1

]∣
∣2

=
∣
∣
∣E

x
tn

[(

η
y,[K+1]
tn+1

− E
x
tn

[
η
y,[K+1]
tn+1

])

∆Wn+1

]∣
∣
∣

2

≤ E
x
tn

[∣
∣∆Wn+1

∣
∣2
]

E
x
tn

[(

η
y,[K+1]
tn+1

− E
x
tn

[
η
y,[K+1]
tn+1

])2
]

= ∆t
(

E
x
tn

[∣
∣η

y,[K+1]
tn+1

∣
∣2
]

−
∣
∣E

x
tn

[
η
y,[K+1]
tn+1

]∣
∣2
)

,

we deduce

∆t

1 + ǫ

∣
∣η

z,[K+1]
tn

∣
∣2 ≤ E

x
tn

[∣
∣η

y,[K+1]
tn+1

∣
∣2
]

−
∣
∣E

x
tn

[
η
y,[K+1]
tn+1

]∣
∣2 +

1

ǫ∆t

∣
∣Rn,[K]

z

∣
∣2. (3.53)

3) The estimate of (3.44). Add the inequality (3.53) to the inequality (3.49), we

get

∣
∣η

y,[K+1]
tn

∣
∣2 +

∆t

1 + ǫ

∣
∣η

z,[K+1]
tn

∣
∣2

≤ E
x
tn

[∣
∣η

y,[K+1]
tn+1

∣
∣2
]

+ γ∆t
∣
∣E

x
tn

[
η
y,[K+1]
tn+1

]∣
∣2

+
{

3(∆tL)2
(∣
∣η

y,[K+1]
tn

∣
∣2 +

∣
∣η

z,[K+1]
tn

∣
∣2
)

+ 3
∣
∣Rn,[K]

y

∣
∣2
}

+
1

γ

{

3∆tL2
(∣
∣η

y,[K+1]
tn

∣
∣2 +

∣
∣η

z,[K+1]
tn

∣
∣2
)}

+
3

γ∆t

∣
∣Rn,[K]

y

∣
∣2 +

1

ǫ∆t

∣
∣Rn,[K]

z

∣
∣2

≤ (1 + γ∆t)Ex
tn

[∣
∣η

y,[K+1]
tn+1

∣
∣2
]
+

(

3∆t+
3

γ

)

L2∆t
(∣
∣η

y,[K+1]
tn

∣
∣2 +

∣
∣η

z,[K+1]
tn

∣
∣2
)

+

(

3 +
3

γ∆t

)
∣
∣Rn,[K]

y

∣
∣2 +

1

ǫ∆t

∣
∣Rn,[K]

z

∣
∣2, (3.54)

which can be further simplified to

(1− C1∆t)E
[∣
∣η

y,[K+1]
tn

∣
∣2
]

+ C3∆tE
[∣
∣η

z,[K+1]
tn

∣
∣2
]

≤ (1 + C2∆t)E
[∣
∣η

y,[K+1]
tn+1

∣
∣2
]

+
C4

∆t
E

[∣
∣Rn,[K]

y

∣
∣2
]

+
1

ǫ∆t
E

[∣
∣Rn,[K]

z

∣
∣2
]

, (3.55)
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where

C1 =

(

3∆t+
3

γ

)

L2, C2 = γ,

C3 =
1

1 + ǫ
−

(

3∆t+
3

γ

)

L2, C4 =
3 + 3γ∆t

γ
.

Now we choose ǫ = 1, γ large enough, and ∆t0 sufficiently small, such that if 0 <
∆t ≤ ∆t0 then C1 ≤ C, C2 ≤ C, C4 ≤ C, 1− C∆t > 0, and C3 > C∗ > 0, where

C and C∗ are two positive constants depending on L. Then for 0 < ∆t ≤ ∆t0, we

obtain from (3.55)

(1− C∆t)E
[∣
∣η

y,[K+1]
tn

∣
∣2
]

+ C3∆tE
[∣
∣η

z,[K+1]
tn

∣
∣2
]

≤ (1 + C∆t)E
[∣
∣η

y,[K+1]
tn+1

∣
∣2
]

+
C

∆t
E

[∣
∣Rn,[K]

y

∣
∣2
]

+
1

∆t
E

[∣
∣Rn,[K]

z

∣
∣2
]

. (3.56)

Dividing both sizes of the inequality (3.56) by 1− C∆t, we deduce

E

[∣
∣η

y,[K+1]
tn

∣
∣2
]

+ C3∆tE
[∣
∣η

z,[K+1]
tn

∣
∣2
]

≤
1 + C∆t

1− C∆t
E

[∣
∣η

y,[K+1]
tn+1

∣
∣2
]

+
C

∆t(1− C∆t)
E

[∣
∣Rn,[K]

y

∣
∣2
]

+
1

∆t(1− C∆t)
E

[∣
∣Rn,[K]

z

∣
∣2
]

. (3.57)

From the inequality (3.57), by recursively inserting η
y,[K+1]
ti

, i = n+1, . . . , N − 1,

we deduce

E

[∣
∣η

y,[K+1]
tn

∣
∣2
]

+ C∗∆t

N−1∑

i=n

(
1 + C∆t

1− C∆t

)i−n

E

[∣
∣η

z,[K+1]
ti

∣
∣2
]

≤

(
1 + C∆t

1− C∆t

)N−n

E

[∣
∣η

y,[K+1]
tN

∣
∣2
]

+

N−1∑

i=n

(
1 + C∆t

1− C∆t

)i−n C

∆t(1− C∆t)
E

[∣
∣Ri,[K]

y

∣
∣2
]

+
N−1∑

i=n

(
1 + C∆t

1− C∆t

)i−n 1

∆t(1− C∆t)
E

[∣
∣Ri,[K]

z

∣
∣2
]

. (3.58)

By Lemma 3.2 and (3.58), for sufficiently small time step ∆t, we obtain

E

[∣
∣η

y,[K+1]
tn

∣
∣2
]

+∆t
N−1∑

i=n

E

[∣
∣η

z,[K+1]
tn

∣
∣2
]

≤ C(∆t)2K+2. (3.59)

By (3.45), (3.46) and (3.59), we end the proof.
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4. Extrapolation algorithms of the Euler scheme for BSDEs

In this section, based on the asymptotic expansions (3.42) and (3.43) in Theo-

rem 3.1, we will apply the Richardson extrapolation to the Euler solutions of the Euler

scheme 3.1 to obtain much accurate approximations to the solution of BSDE (1.1). To

this end, we construct our extrapolation algorithms for BSDEs.

For any tn ∈ πN , let (Yn
i,0,Z

n
i,0) be the numerical approximations of the exact

solution (Ytn , Ztn) of the BSDE (1.1) by Scheme 3.1 with time step sizes ∆ti, i =
0, 1, . . . ,K − 1. Then we define the extrapolation solutions by Yn

m,p =
∑m

i=m−p αiY
n
i,0

and Zn
m,p =

∑m
i=m−p αiZ

n
i,0, 1 ≤ p ≤ m ≤ K − 1. Here πN , ∆ti and αi are defined in

Subsection 2.4.

All the extrapolation solutions Yn
m,p and Zn

m,p, 1 ≤ p ≤ m ≤ K − 1 can be obtained

by the Aitken-Neville algorithm in Subsection 2.4

Yn
m,p = Yn

m,p−1 +
Yn
m,p−1 −Yn

m−1,p−1

Nm/Nm−p − 1
,

Zn
m,p = Zn

m,p−1 +
Zn
m,p−1 −Zn

m−1,p−1

Nm/Nm−p − 1
,

1 ≤ p ≤ m ≤ K − 1. (4.1)

Now we summarize our Richardson extrapolation algorithms for solving the BSDEs

(1.1) in the following algorithm.

Algorithm 4.1 Richardson Extrapolation of the Euler Solutions for BSDEs

1: Input: n0 ∈ πN,0, K, {Nm}K−1
m=0, Xn0 , Y NK−1 .

2: for m = 0, 1, . . . ,K − 1 do

3: Set N = N0 ∗Nm;

Solve {(Y n, Zn)}N−1
n=n0

by Scheme 3.1 on πN,m;

Set Yn0

m,0 = Y n0, Zn0

m,0 = Zn0.

4: end for

5: for m = 1, 2, . . . ,K − 1 do

6: for p = 1, 2, . . . ,m do

7: Yn0
m,p = Yn0

m,p−1 +
Y

n0
m,p−1

−Y
n0
m−1,p−1

Nm
Nm−p

−1
;

8: Zn0
m,p = Zn0

m,p−1 +
Z

n0
m,p−1

−Z
n0
m−1,p−1

Nm
Nm−p

−1
.

9: end for

10: end for

11: return Yn0

K−1,K−1, Z
n0

K−1,K−1.

For Algorithm 4.1, we have the following conclusion.

Theorem 4.1. Under Assumption 3.1, and if E[|Y N − YtN |
2] = O((∆t)2K+2), E[|ZN −

ZtN |
2] = O((∆t)2K+2), the numerical solutions Yn0

K−1,K−1 and Zn0

K−1,K−1 of Algorithm 4.1
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have the estimates

E

[∣
∣Yn0

K−1,K−1 − Y0

∣
∣2
]

≤ C(∆t)2K+2,

E

[∣
∣Zn0

K−1,K−1 − Z0

∣
∣2
]

≤ C(∆t)2K+2,
(4.2)

where (Y0, Z0) refers to the exact solution of BSDE (1.1) at t = 0.

Based on the asymptotic expansion (3.42) and (3.43) in Theorem 3.1, the estimates

(4.2) can be obtained by the convergence result of the Aitken-Neville algorithm [18].

Remark 4.1. The Nm,m = 0, 1, . . . ,K − 1 are the first K elements of any step-number

sequence for Richardson extrapolation, and different {Nm}K−1
m=0 leads different extrap-

olation algorithm. Compared with other high accurate multistep methods [38,41], the

RE-Euler methods is self-starting ones. So the RE-Euler methods can be used to give

the initializations of numerical solutions of other multistep schemes. The Algorithm 4.1

returns the Euler solution when K = 1. (Y0
m,p, Z

0
m,p) is an approximation to the exact

solution (Yt0 , Zt0) of the BSDE (1.1) with error O((∆t)p+1). Theoretically, our Algo-

rithm 4.1 can achieve any high-order convergence provided the exact solution of the

BSDE (1.1) is smooth enough.

5. Numerical tests

In this section, we will provide several numerical tests to verify our theoretical

results and to show effectiveness, efficiency and high-order convergence rate of the

proposed RE-Euler methods.

The conditional mathematical expectations E
x
tn [·] in Scheme 3.1 are evaluated by

the Gauss-Hermite quadrature rule with r Gaussian nodes, where the values of the

integrands at non-grid points are approximated by local Lagrange interpolations with

degree l. For more details about the Gauss-Hermite quadrature rule for Ex
tn [·], readers

may refer to [38, Section 3.4]. To show the accuracy and the efficiency of the extrap-

olation methods, we will report the errors |Y0 − Y0
K−1,K−1| and |Z0 − Z0

K−1,K−1| be-

tween the numerical solution (Y0
K−1,K−1,Z

0
K−1,K−1) of the RE-Euler methods at n = 0

and the exact solution (Y0, Z0) at t = 0 and the related running times (R.T.). For

all tests, if not specified, we take X0 = 0.0 and T = 1.0. The space grid points are

xi = ih, i = 0,±1,±2, . . ., with h the spatial step size. The time convergence rates

(C.R.) are obtained by linear square fitting to the logarithmic errors and the negative

logarithm of the time step size ∆t = T/N . All the numerical tests are implemented in

Python 3.9.16 on a laptop with Intel Core i5-12500H 12-Core Processor (2.5GHz), and

16 GB DDR5 RAM (4800MHz).

5.1. Time convergence tests

First, we choose an 1-dimensional BSDE in the form

− dYt = ft dt− Zt dWt (5.1)
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with the terminal condition

YT =
exp (T/4 +XT )

1 + exp (T/4 +XT )
,

where ft = YtZt − 3Zt/4. The analytic solutions Yt and Zt of (5.1) are

Yt =
exp (t/4 +Xt)

1 + exp (t/4 +Xt)
, Zt =

exp (t/4 +Xt)

(1 + exp (t/4 +Xt))2
.

Remark 5.1. The aim of our choosing numerical example (5.1) is to show the stability,

efficiency and high convergency of the algorithms for solving nonlinear BSDEs. In this

numerical example, the function f is nonlinear with respect to y and z, but the solution

(Yt, Zt) is smooth and bounded. Thus the chosen function f can be seen as Lipschitz

continuous function.

To demonstrate the accuracy of our extrapolation methods, we test the RE-Euler

methods with order up to 5 for three different kinds of step-number sequences named

Romberg, Bulirsch and harmonic sequences defined in Subsection 2.4. For the Euler

scheme 3.1, we take the spatial step size h = ∆t. And we take r = 5 and l = 9 such that

the errors resulted from the spatial interpolations and approximations of conditional

expectations do not limit the accuracy of the extrapolation methods. The relevant

results are listed in Tables 1-4.

To show the accuracy of the Richardson extrapolation in (2.22), in Table 1 we list

the absolute errors |Y0 −Y0
m,p| and |Z0 −Z0

m,p|, 0 ≤ p ≤ m ≤ 4 of the RE-Euler method

with harmonic sequence for the BSDE (5.1) with time step size ∆t = 1/N = 1/8.

From Table 1, we can find that the errors get smaller and smaller as m and p in-

crease. The reasons are the time step sizes get smaller and smaller as m increases and

the time convergence rates get higher and higher as p increases.

Table 1: The absolute errors of the RE-Euler method using harmonic sequence.

m

p
0 1 2 3 4

0
5.456E-03

3.994E-03

1
2.793E-03 1.301E-04

1.960E-03 7.330E-05

2
1.877E-03 4.403E-05 9.641E-07

1.299E-03 2.304E-05 1.338E-06

3
1.413E-03 2.213E-05 2.259E-07 2.014E-08

9.713E-04 1.159E-05 3.504E-07 2.115E-08

4
1.133E-03 1.331E-05 8.776E-08 4.334E-09 3.832E-10

7.757E-04 6.900E-06 1.429E-07 4.542E-09 3.897E-10
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Table 2: Errors, running times and convergence rates of the RE-Euler method using Romberg sequence.

N = 10 N = 12 N = 14 N = 16 N = 18 C.R.

K = 1
|Y0 − Y0

0,0
| 6.565E-04 5.467E-04 4.684E-04 4.096E-04 3.640E-04 1.003

|Z0 −Z0
0,0| 3.795E-03 3.171E-03 2.723E-03 2.386E-03 2.123E-03 0.988

K = 2
|Y0 − Y0

1,1| 1.499E-06 1.112E-06 8.552E-07 6.768E-07 5.485E-07 1.712

|Z0 −Z0

1,1
| 2.968E-05 2.060E-05 1.512E-05 1.158E-05 9.144E-06 2.003

K = 3
|Y0 − Y0

2,2
| 1.047E-07 6.128E-08 3.890E-08 2.621E-08 1.849E-08 2.949

|Z0 −Z0
2,2| 1.874E-08 1.137E-08 7.383E-09 5.049E-09 3.599E-09 2.808

K = 4
|Y0 − Y0

3,3| 5.070E-10 2.424E-10 1.299E-10 7.575E-11 4.707E-11 4.044

|Z0 −Z0

3,3
| 3.551E-10 1.579E-10 7.983E-11 4.434E-11 2.645E-11 4.419

K = 5
|Y0 − Y0

3,3
| 9.718E-13 4.177E-13 1.902E-13 8.749E-14 6.928E-14 4.701

|Z0 −Z0
4,4| 5.855E-12 2.446E-12 1.176E-12 6.211E-13 3.280E-13 4.868

Table 3: Errors, running times and convergence rates of the RE-Euler method using Bulirsch sequence.

N = 10 N = 12 N = 14 N = 16 N = 18 C.R.

K = 1
|Y0 − Y0

0,0| 6.565E-04 5.467E-04 4.684E-04 4.096E-04 3.640E-04 1.003

|Z0 −Z0

0,0
| 3.795E-03 3.171E-03 2.723E-03 2.386E-03 2.123E-03 0.988

K = 2
|Y0 − Y0

1,1
| 1.499E-06 1.112E-06 8.552E-07 6.768E-07 5.485E-07 1.712

|Z0 −Z0
1,1| 2.968E-05 2.060E-05 1.512E-05 1.158E-05 9.144E-06 2.003

K = 3
|Y0 − Y0

2,2| 1.391E-07 8.149E-08 5.175E-08 3.488E-08 2.461E-08 2.947

|Z0 −Z0

2,2
| 2.466E-08 1.502E-08 9.769E-09 6.691E-09 4.775E-09 2.794

K = 4
|Y0 − Y0

3,3
| 1.360E-09 6.498E-10 3.482E-10 2.029E-10 1.261E-10 4.047

|Z0 −Z0

3,3| 9.973E-10 4.423E-10 2.230E-10 1.236E-11 7.356E-11 4.436

K = 5
|Y0 − Y0

3,3
| 6.449E-12 2.815E-12 1.409E-12 7.375E-13 3.769E-13 4.779

|Z0 −Z0

4,4
| 4.001E-11 1.687E-11 8.050E-12 4.269E-12 2.423E-12 4.771

Table 4: Errors, running times and convergence rates of the RE-Euler method using harmonic sequence.

N = 10 N = 12 N = 14 N = 16 N = 18 C.R.

K = 1
|Y0 − Y0

0,0
| 6.565E-04 5.467E-04 4.684E-04 4.096E-04 3.640E-04 1.003

|Z0 −Z0

0,0
| 3.795E-03 3.171E-03 2.723E-03 2.386E-03 2.123E-03 0.988

K = 2
|Y0 − Y0

1,1
| 1.499E-06 1.112E-06 8.552E-07 6.768E-07 5.485E-07 1.712

|Z0 −Z0

1,1
| 2.968E-05 2.060E-05 1.512E-05 1.158E-05 9.144E-06 2.003

K = 3
|Y0 − Y0

2,2| 1.391E-07 8.149E-08 5.175E-08 3.488E-08 2.461E-08 2.947

|Z0 −Z0

2,2
| 2.466E-08 1.502E-08 9.769E-09 6.691E-09 4.775E-09 2.794

K = 4
|Y0 − Y0

3,3
| 1.360E-09 6.498E-10 3.482E-10 2.029E-10 1.261E-10 4.047

|Z0 −Z0
3,3| 9.973E-10 4.423E-10 2.230E-10 1.236E-11 7.356E-11 4.436

K = 5
|Y0 − Y0

3,3| 7.633E-12 3.370E-12 1.698E-12 9.470E-13 4.300E-13 4.773

|Z0 −Z0

4,4
| 4.780E-11 2.022E-11 9.658E-12 5.151E-12 2.909E-12 4.759
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To present the convergence rates with respect to ∆t of our RE-Euler methods, we

calculate the numerical solutions of the BSDE (5.1) with various time step sizes by the

RE-Euler methods with the three step-number sequences and list the absolute errors

and the convergence rates in Tables 2-4.

From Tables 2-4, we can draw the following conclusions:

1. Our RE-Euler methods are stable and enjoy the K-order time convergence rates

for 1 ≤ K ≤ 5 no matter which one of the three step-number sequences is chosen.

Such a result is consistent with our theoretical results.

2. For the same time step size ∆t = T/N , when K = 1, 2, the RE-Euler methods

with three different step-number sequences give the same errors, when K = 3, 4,

the RE-Euler methods with Bulirsch and harmonic sequences give larger errors

than the ones of Romberg sequence and when K = 5, the errors from small to

large are given by the RE-Euler methods with Romberg, and Bulirsch and har-

monic sequences in turn. Such results are consistent with the discussions of the

extrapolation algorithm described in Subsection 2.4.

Next we illustrate the accuracy of our RE-Euler methods for a two-dimensional

example






dXt = σI2×2 dWt,

− dYt =

((

1 +
5

2
σ2

)

e−2t Yt

Y 2
t + (σZt)2

)

dt− Zt dWt

(5.2)

with X0 = x0 and YT = e−T sin (X1
T + 2X2

T ).
Here Zt = (Z1

t , Z
2
t )

⊤, I2×2 is the 2 by 2 real identity matrix and σ = (3/σ,−1/σ).
The analytical solution is given by

{

Yt = e−t sin (X1
t + 2X2

t ),

Zt =
(
e−t cos (X1

t + 2X2
t ), 2e

−t cos (X1
t + 2X2

t )
)
.

(5.3)

Note that Wt = (W 1
t ,W

2
t )

⊤ is a two-dimensional standard Brownian motion. For this

example, we focus on tesing the convergence rate in time. We set x = (0.1, 0.1)⊤ ,

σ = 0.2 and T = 1.0.

We report the errors |Y 0 − Y0
K−1,K−1|, |Z

1
0 − Z0,1

K−1,K−1| and |Z2
0 − Z0,2

K−1,K−1| be-

tween the numerical solution (Y0
K−1,K−1,Z

0,1
K−1,K−1,Z

0,2
K−1,K−1) computed by RE-Euler

methods at n = 0 and the exact solution (Y0, Z
1
0 , Z

2
0 ) at t = 0 in Table 5. Again, it can

be clearly seen that the convergence rates of our RE-Euler methods roughly coincide

with our theoretical results.

5.1.1. Efficiency tests

In this subsection, we are concerned about the efficiency of our RE-Euler methods. The

k-order extrapolation method is denoted by RE-Euler(k). We will use example (5.1)

for the efficiency tests of the RE-Euler methods.
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Table 5: Errors and convergence rates of the RE-Euler method using harmonic sequence for example (5.2).

K N = 18 N = 20 N = 22 N = 24 N = 26 C.R.

1

|Y0 − Y0

0,0| 1.940E-02 1.735E-02 1.568E-02 1.431E-02 1.316E-02 1.055

|Z1
0 −Z0,1

0,0
| 6.328E-04 5.719E-04 5.216E-04 4.794E-04 4.434E-04 0.967

|Z2

0 −Z0,2

0,0
| 1.266E-03 1.144E-03 1.043E-03 9.588E-04 8.868E-04 0.967

R.T.(s) 0.75 1.13 1.56 2.15 3.00

2

|Y0 − Y0

1,1| 6.300E-04 5.063E-04 4.158E-04 3.476E-04 2.948E-04 2.065

|Z1
0 −Z0,1

1,1
| 1.174E-05 9.031E-06 7.168E-06 5.824E-06 4.836E-06 2.413

|Z2

0 −Z0,2

1,1
| 2.347E-05 1.806E-05 1.434E-05 1.166E-05 9.670E-06 2.411

R.T.(s) 11.52 17.97 24.90 34.57 46.98

3

|Y0 − Y0
2,2| 1.065E-05 7.703E-06 5.750E-06 4.406E-06 3.450E-06 3.065

|Z1

0
−Z0,1

2,2
| 1.138E-06 7.621E-07 5.407E-07 3.864E-07 3.018E-07 3.637

|Z2
0 −Z0,2

2,2
| 2.255E-06 1.529E-06 1.082E-06 7.882E-07 5.976E-07 3.618

R.T.(s) 62.62 94.78 136.09 190.49 260.64

4

N = 8 N = 10 N = 12 N = 14 N = 16

|Y0 − Y0
3,3| 4.103E-06 1.386E-06 5.755E-07 3.164E-07 1.799E-07 4.507

|Z1

0
−Z0,1

3,3
| 1.246E-05 1.746E-06 6.967E-07 3.280E-07 2.129E-07 5.801

|Z2
0 −Z0,2

3,3
| 1.294E-05 4.446E-06 1.304E-06 6.449E-07 3.507E-07 5.323

R.T.(s) 9.33 22.96 45.76 83.11 140.26

We first compare the RE-Euler methods with the Euler scheme. Then we compare

the efficiency of our RE-Euler methods among the three step-number sequences. Fi-

nally, we compare our RE-Euler methods, where the harmonic step-number sequence

is used, with the multistep schemes proposed in [38], and use DM(k) to denote the k-

step k-th order one, where the ‘DM’ refers to ‘Differential Multistep’. All the numerical

results are listed in Tables 7-13. In the tables, Y 0
k and Z0

k is the numerical solutions at

n = 0 by the DM(k) scheme.

To compare our RE-Euler methods with the Euler scheme, we calculate the numer-

ical solutions of the BSDE (5.1) with various time step sizes by the Euler scheme and

the RE-Euler methods with K = 2 and list the absolute errors and the runing times in

Table 6.

Table 6: Errors and running times of the Euler scheme and the 2-order RE-Euler method.

Euler(K = 1)

N = 32 N = 64 N = 128 N = 256 N = 512

|Y0 − Y0
0,0| 8.033E-05 4.115E-05 2.082E-05 1.047E-05 5.253E-06

|Z0 −Z0

0,0
| 1.459E-03 7.286E-04 3.640E-04 1.819E-04 9.095E-05

R.T.(s) 0.0810 0.3003 1.6665 9.6058 55.6975

K = 2

N = 8 N = 12 N = 16 N = 20 N = 24

|Y0 − Y0

1,1
| 3.106E-05 1.394E-05 7.873E-06 5.050E-06 3.512E-06

|Z0 −Z0

1,1
| 2.393E-05 1.233E-05 7.423E-06 4.941E-06 3.520E-06

R.T.(s) 0.0239 0.0563 0.0710 0.1135 0.1645
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Table 7: Errors and running times of 3-order RE-Euler methods with different step-number sequences.

Romberg

N = 20 N = 22 N = 24 N = 26 N = 28

|Y0 − Y0

2,2
| 6.685E-09 4.900E-09 3.695E-09 2.854E-09 2.248E-09

|Z0 −Z0

2,2| 1.290E-07 9.719E-08 7.505E-08 5.915E-08 4.745E-08

R.T.(s) 0.541 0.696 0.864 1.013 1.236

Bulirsch(harmonic)

N = 24 N = 26 N = 28 N = 30 N = 32

|Y0 − Y0

2,2| 4.983E-09 3.846E-09 3.028E-09 2.426E-09 1.973E-09

|Z0 −Z0

2,2
| 9.993E-08 7.877E-08 6.319E-08 5.146E-08 4.246E-08

R.T.(s) 0.504 0.608 0.714 0.861 1.028

Table 8: Errors and running times of 4-order RE-Euler methods with different step-number sequences.

Romberg

N = 20 N = 22 N = 24 N = 26 N = 28

|Y0 − Y0

3,3
| 1.299E-10 8.913E-11 6.318E-11 4.600E-11 3.430E-11

|Z0 −Z0
3,3| 3.071E-10 2.107E-10 1.493E-10 1.087E-10 8.105E-11

R.T.(s) 3.004 3.803 4.826 5.899 7.045

Bulirsch(harmonic)

N = 28 N = 30 N = 32 N = 34 N = 36

|Y0 − Y0
3,3| 9.110E-11 6.933E-11 5.366E-11 4.221E-11 3.366E-11

|Z0 −Z0

3,3
| 2.153E-10 1.638E-10 1.268E-10 9.972E-11 7.946E-11

R.T.(s) 1.730 2.040 2.374 2.783 3.184

Table 9: Errors and running times of 5-order RE-Euler methods with Romberg and Bulirsch sequences.

Romberg

N = 8 N = 10 N = 12 N = 14 N = 16

|Y0 − Y0

4,4
| 2.351E-11 7.463E-12 2.933E-12 1.330E-12 6.587E-13

|Z0 −Z0

4,4
| 3.714E-11 1.361E-11 5.728E-12 2.805E-12 1.510E-12

R.T.(s) 1.726 3.011 4.732 7.035 9.902

Bulirsch

N = 12 N = 16 N = 20 N = 24 N = 28

|Y0 − Y0

4,4
| 2.132E-11 4.885E-12 1.518E-12 6.378E-13 3.488E-13

|Z0 −Z0

4,4| 3.921E-11 1.064E-11 3.676E-12 1.461E-12 6.753E-13

R.T.(s) 0.577 1.159 1.971 3.068 4.482

Table 10: Errors and running times of 5-order RE-Euler methods with Bulirsch and harmonic sequences.

Bulirsch

N = 16 N = 18 N = 20 N = 22 N = 24

|Y0 − Y0
4,4| 4.885E-12 2.643E-12 1.518E-12 9.844E-13 6.378E-13

|Z0 −Z0

4,4
| 1.064E-11 5.619E-12 3.676E-12 2.184E-12 1.461E-12

R.T.(s) 1.140 1.503 1.947 2.463 3.077

harmonic

N = 18 N = 20 N = 22 N = 24 N = 26

|Y0 − Y0

4,4
| 3.205E-12 1.893E-12 1.161E-12 7.268E-13 6.057E-13

|Z0 −Z0
4,4| 7.067E-12 4.332E-12 2.398E-12 1.539E-12 1.255E-12

R.T.(s) 0.942 1.168 1.497 1.815 2.174



28 Y. Xu and W. Zhao

Table 11: Errors and running times the DM(3) scheme and the 3-order RE-Euler method.

DM(3)

N = 64 N = 68 N = 72 N = 76 N = 80

|Y0 − Y 0

3 | 2.518E-08 2.122E-08 1.805E-08 1.548E-08 1.338E-08

|Z0 − Z0

3
| 2.103E-07 1.770E-07 1.503E-07 1.288E-07 1.112E-07

R.T.(s) 0.845 0.939 1.050 1.179 1.301

RE-Euler(3)

N = 20 N = 22 N = 24 N = 26 N = 28

|Y0 − Y0

2,2
| 9.028E-09 6.613E-09 4.983E-09 3.846E-09 3.028E-09

|Z0 −Z0
2,2| 1.717E-07 1.294E-07 9.993E-08 7.877E-08 6.319E-08

R.T.(s) 0.351 0.435 0.535 0.652 0.774

Table 12: Errors and running times the DM(4) scheme and the 4-order RE-Euler method.

DM(4)

N = 64 N = 68 N = 72 N = 76 N = 80

|Y0 − Y 0

4
| 9.056E-10 7.253E-10 5.885E-10 4.713E-10 3.949E-10

|Z0 − Z0
4 | 1.037E-08 8.322E-09 6.812E-09 5.360E-09 4.746E-09

R.T.(s) 2.092 2.376 2.688 3.005 3.364

RE-Euler(4)

N = 16 N = 18 N = 20 N = 22 N = 24

|Y0 − Y0
3,3| 8.286E-10 5.216E-10 3.445E-10 2.365E-10 1.677E-10

|Z0 −Z0

3,3
| 1.962E-09 1.235E-09 8.145E-10 5.591E-10 3.962E-10

R.T.(s) 0.480 0.655 0.827 1.029 1.275

Table 13: Errors and running times the DM(5) scheme and the 5-order RE-Euler method.

DM(5)

N = 64 N = 68 N = 72 N = 76 N = 80

|Y0 − Y 0

5 | 4.447E-11 3.382E-11 2.607E-11 2.037E-11 1.611E-11

|Z0 − Z0

5
| 7.502E-10 5.722E-10 4.425E-10 3.466E-10 2.746E-10

R.T.(s) 3.889 4.149 4.613 5.205 5.797

RE-Euler(5)

N = 12 N = 14 N = 16 N = 18 N = 20

|Y0 − Y0

4,4
| 2.565E-11 1.167E-11 5.951E-12 3.167E-12 1.807E-12

|Z0 −Z0
4,4| 4.740E-11 2.309E-11 1.271E-11 6.735E-12 4.527E-12

R.T.(s) 0.490 0.693 0.939 1.271 1.641

The errors and running times in Table 6 show that to achieve the same or smaller

errors, the RE-Euler method with K = 2 which enjoys theoretical time convergence

rate 2 costs less time than the Euler scheme, which means that our 2-order RE-Euler

method is more efficient than the Euler scheme.

To show the efficiency of our RE-Euler methods among the three step-number se-

quences, we list the errors and the runing times for the K-order (3 ≤ K ≤ 5) RE-Euler

methods with the three step-number sequences in Tables 7-10.

From Tables 7 and 8, we can see that for K = 3 and K = 4, our RE-Euler methods

with Bulirsch and harmonic sequences cost less time than the RE-Euler method with

Romberg sequence for achieving the same or smaller errors. From Tables 9 and 10, we
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can conclude that to achieve the same or smaller errors, RE-Euler method with Bulirsch

sequence costs less time than the RE-Euler method with Romberg sequence and RE-

Euler method with harmonic sequence costs less time than the RE-Euler method with

Bulirsch sequence. Thus the harmonic sequence is the most economical one of the three

sequences for our RE-Euler methods. So we will adopt the harmonic sequence for our

RE-Euler methods to compare with the DM(k) scheme in the follows.

To compare the efficiency of our RE-Euler(k) method with the harmonic step-

number sequence with the DM(k) scheme, we numerically solve the BSDE (5.1) with

various time step sizes by the DM(k) scheme and the RE-Euler(k) method, and list the

absolute errors and the running times in Tables 11-13.

The errors and the running times in Tables 11-13 show that to achieve the same

or smaller errors our RE-Euler methods cost less time than the DM(k) schemes for the

same rates of convergence from 3 to 5. So our RE-Euler methods with the harmonic

sequence are more efficient than DM(k) schemes.

All the above numerical tests show that:

1. Our RE-Euler methods enjoy K-order convergence in time discretization for solv-

ing BSDEs for 1 ≤ K ≤ 5.

2. The harmonic sequence is the most economical one of the three sequences for

our RE-Euler methods with order from 3 to 5.

3. Our RE-Euler methods are stable and more efficient than the Euler scheme and

the DM schemes.

6. Conclusions

In this work, by the theory of backward stochastic differential equations and the

Adomian decomposition, we theoretically proved that the solutions of the Euler scheme

for solving BSDEs admit asymptotic expansions, where the coefficients in the expan-

sions are determined by a specific BSDE system. Then based on the expansions, we

proposed Richardson extrapolation-type algorithms for solving BSDEs. Some numer-

ical tests were carried out. The numerical results of the tests verified our theoretical

conclusions, and showed that the algorithms are stable, very efficient and high accu-

rate.
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[18] C. B. LIEM, T. LÜ, AND T. M. SHIH, The Splitting Extrapolation Method: A New Tech-

nique in Numerical Solution of Multidimensional Problems, Series on Applied Mathematics,
Vol. 7, World Scientific, 1995.

[19] Q. LIN, I. H. SLOAN, AND R. XIE, Extrapolation of the iterated-collocation method for

integral equations of the second kind, SIAM J. Numer. Anal. 27 (1990), 1535–1541.
[20] Q. LIN, S. ZHANG, AND N. YAN, An acceleration method for integral equations by using

interpolation post-processing, Adv. Comput. Math. 9 (1998), 117–129.
[21] Q. LIN, S. ZHANG, AND N. YAN, Asymptotic error expansion and defect correction for

Sobolev and viscoelasticity type equations, J. Comput. Math. 16 (1998), 51–62.

[22] Q. LIN, S. ZHANG, AND N. YAN, High accuracy analysis for integrodifferential equations,



Richardson Extrapolation of the Euler Scheme for BSDEs 31

Acta Math. Appl. Sinica (English Ser.) 14 (1998), 202–211.
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