On the General Algebraic Inverse Eigenvalue Problems
Keywords:
Linear algebra, Eigenvalue problem, Inverse problem.Abstract
A number of new results on sufficient conditions for the solvability and numerical algorithms of the following general algebraic inverse eigenvalue problem are obtained: Given $n+1$ real $n\times n$ matrices $A=(a_{ij}),A_k=(a_{ij}^{(k)})(k=1,2,\cdots,n)$ and $n$ distinct real numbers $\lambda_1,\lambda_2,\cdots,\lambda_n,$ find $n$ real number $c_1,c_2,\cdots,c_n$ such that the matrix $A(c)=A+\sum\limits_{k=1}^{n}c_k A_k$ has eigenvalues $\lambda_1,\lambda_2,\cdots,\lambda_n.$
Published
2004-08-02
Abstract View
- 33484
Pdf View
- 3211
Issue
Section
Articles
How to Cite
On the General Algebraic Inverse Eigenvalue Problems. (2004). Journal of Computational Mathematics, 22(4), 567-580. https://global-sci.com/index.php/JCM/article/view/11654