A New Proof of Diophantine Equation $\Bigg( \begin{matrix} n \\ 2 \end{matrix} \Bigg) = \Bigg( \begin{matrix} m \\ 4 \end{matrix} \Bigg)$

Authors

  • Huilin Zhu

Keywords:

binomial Diophantine equation, fundamental unit, factorization, $p$-adic analysis method.

Abstract

By using algebraic number theory and $p$-adic analysis method, we give a new and simple proof of Diophantine equation $\Bigg( \begin{matrix} n \\ 2  \end{matrix} \Bigg) = \Bigg( \begin{matrix} m \\ 4  \end{matrix} \Bigg)$.



Published

2021-05-20

Abstract View

  • 94

Pdf View

  • 26

Issue

Section

Articles

How to Cite

A New Proof of Diophantine Equation $\Bigg( \begin{matrix} n \\ 2 \end{matrix} \Bigg) = \Bigg( \begin{matrix} m \\ 4 \end{matrix} \Bigg)$. (2021). Communications in Mathematical Research, 25(3), 282-288. https://global-sci.com/index.php/cmr/article/view/8622