A New Proof of Diophantine Equation $\Bigg( \begin{matrix} n \\ 2 \end{matrix} \Bigg) = \Bigg( \begin{matrix} m \\ 4 \end{matrix} \Bigg)$
Keywords:
binomial Diophantine equation, fundamental unit, factorization, $p$-adic analysis method.Abstract
By using algebraic number theory and $p$-adic analysis method, we give a new and simple proof of Diophantine equation $\Bigg( \begin{matrix} n \\ 2 \end{matrix} \Bigg) = \Bigg( \begin{matrix} m \\ 4 \end{matrix} \Bigg)$.
Downloads
Published
2021-05-20
Abstract View
- 94
Pdf View
- 26
Issue
Section
Articles
How to Cite
A New Proof of Diophantine Equation $\Bigg( \begin{matrix} n \\ 2 \end{matrix} \Bigg) = \Bigg( \begin{matrix} m \\ 4 \end{matrix} \Bigg)$. (2021). Communications in Mathematical Research, 25(3), 282-288. https://global-sci.com/index.php/cmr/article/view/8622