Self-similar Singular Solution of a P-Laplacian Evolution Equation with Gradient Absorption Term
Keywords:
p-Laplacian evolution equation;gradient absorption;self-similar;singular solution;very singular solutionAbstract
"In this paper we deal with the self-similar singular solution of the p-Laplacian evolution equation u_t = div(|\u2207|^{p-2}\u2207u) - |\u2207u|^q for p > 2 and q > 1 in R^n \u00d7 (0, \u221e). We prove that when p > q + n\/(n + 1) there exist self-similar singular solutions, while p \u2264 q+n\/(n+1) there is no any self-similar singular solution. In case of existence, the self-similar singular solutions are the self-similar very singular solutions, which have compact support. Moreover, the interface relation is obtained.<\/p>"
Downloads
Published
2020-05-12
Abstract View
- 39554
Pdf View
- 2513
Issue
Section
Articles
How to Cite
Self-similar Singular Solution of a P-Laplacian Evolution Equation with Gradient Absorption Term. (2020). Journal of Partial Differential Equations, 17(4), 369-383. https://global-sci.com/index.php/jpde/article/view/14901