Polar Coordinates for the Generalized Baouendi-Grushin Operator and Applications
Keywords:
Generalized Baouendi-Grushin operator;polar coordinate;nonexistence;second order evolution inequalityAbstract
In this parer, by using the polar coordinates for the generalized Baouendi- Grushin operator L_α = \sum^n_{i=1}\frac{∂²}{∂x²_i} + \sum^m_{j=1}|x|^{2α} \frac{∂²}{∂y²_j}, where x = (x_1, x_2, …, x_n) ∈ \mathbb{R}^n, y = (y_1, y_2, …, y_m) ∈ \mathbb{R}^m, α › 0, we obtain the volume of the ball associated to L_α and prove the nonexistence for a second order evolution inequality which is relative to L_α.Downloads
Published
2020-05-12
Abstract View
- 39699
Pdf View
- 2797
Issue
Section
Articles
How to Cite
Polar Coordinates for the Generalized Baouendi-Grushin Operator and Applications. (2020). Journal of Partial Differential Equations, 20(4), 322-336. https://global-sci.com/index.php/jpde/article/view/4109