A Fast Finite Volume Method on Locally Refined Meshes for Fractional Diffusion Equations
Year: 2019
Author: Jinhong Jia, Hong Wang
East Asian Journal on Applied Mathematics, Vol. 9 (2019), Iss. 4 : pp. 755–779
Abstract
In this work, we consider a boundary value problem involving Caputo derivatives defined in the plane. We develop a fast locally refined finite volume method for variable-coefficient conservative space-fractional diffusion equations in the plane to resolve boundary layers of the solutions. Numerical results are presented to show the utility of the method.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/eajam.271118.280319
East Asian Journal on Applied Mathematics, Vol. 9 (2019), Iss. 4 : pp. 755–779
Published online: 2019-01
AMS Subject Headings:
Copyright: COPYRIGHT: © Global Science Press
Pages: 25
Keywords: Space-fractional diffusion equation locally refined mesh Toeplitz matrix circulant matrix finite volume method.
Author Details
Jinhong Jia Email
Hong Wang Email
-
Wellposedness and regularity of a variable-order space-time fractional diffusion equation
Zheng, Xiangcheng | Wang, HongAnalysis and Applications, Vol. 18 (2020), Iss. 04 P.615
https://doi.org/10.1142/S0219530520500013 [Citations: 15] -
Finite Element Approximations to Caputo–Hadamard Time-Fractional Diffusion Equation with Application in Parameter Identification
Cheng, Shijing | Du, Ning | Wang, Hong | Yang, ZhiweiFractal and Fractional, Vol. 6 (2022), Iss. 9 P.525
https://doi.org/10.3390/fractalfract6090525 [Citations: 0] -
A Bound-Preserving Numerical Scheme for Space–Time Fractional Advection Equations
Gao, Jing | Chen, HuaiguangFractal and Fractional, Vol. 8 (2024), Iss. 2 P.89
https://doi.org/10.3390/fractalfract8020089 [Citations: 0] -
A fast fractional block-centered finite difference method for two-sided space-fractional diffusion equations on general nonuniform grids
Kong, Meijie | Fu, HongfeiFractional Calculus and Applied Analysis, Vol. 27 (2024), Iss. 6 P.3446
https://doi.org/10.1007/s13540-024-00346-5 [Citations: 0] -
A variably distributed-order time-fractional diffusion equation: Analysis and approximation
Yang, Zhiwei | Zheng, Xiangcheng | Wang, HongComputer Methods in Applied Mechanics and Engineering, Vol. 367 (2020), Iss. P.113118
https://doi.org/10.1016/j.cma.2020.113118 [Citations: 27] -
A preconditioned fast finite element approximation to variable-order time-fractional diffusion equations in multiple space dimensions
Jia, Jinhong | Wang, Hong | Zheng, XiangchengApplied Numerical Mathematics, Vol. 163 (2021), Iss. P.15
https://doi.org/10.1016/j.apnum.2021.01.001 [Citations: 14] -
A fast H3N3‐2σσ‐based compact ADI difference method for time fractional wave equations
Du, Ruilian
ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 104 (2024), Iss. 12
https://doi.org/10.1002/zamm.202400431 [Citations: 0] -
Well-posedness and regularity of Caputo–Hadamard fractional stochastic differential equations
Yang, Zhiwei | Zheng, Xiangcheng | Wang, HongZeitschrift für angewandte Mathematik und Physik, Vol. 72 (2021), Iss. 4
https://doi.org/10.1007/s00033-021-01566-y [Citations: 16] -
An Efficient Explicit Decoupled Group Method for Solving Two–Dimensional Fractional Burgers’ Equation and Its Convergence Analysis
Abdi, N. | Aminikhah, H. | Sheikhani, A. H. Refahi | Alavi, J. | Taghipour, M. | De León, ManuelAdvances in Mathematical Physics, Vol. 2021 (2021), Iss. P.1
https://doi.org/10.1155/2021/6669287 [Citations: 6] -
A fast collocation approximation to a two-sided variable-order space-fractional diffusion equation and its analysis
Jia, Jinhong | Wang, Hong | Zheng, XiangchengJournal of Computational and Applied Mathematics, Vol. 388 (2021), Iss. P.113234
https://doi.org/10.1016/j.cam.2020.113234 [Citations: 11] -
An efficient positive‐definite block‐preconditioned finite volume solver for two‐sided fractional diffusion equations on composite mesh
Dai, Pingfei | Jia, Jinhong | Wang, Hong | Wu, Qingbiao | Zheng, XiangchengNumerical Linear Algebra with Applications, Vol. 28 (2021), Iss. 5
https://doi.org/10.1002/nla.2372 [Citations: 1] -
Fast upwind and Eulerian-Lagrangian control volume schemes for time-dependent directional space-fractional advection-dispersion equations
Du, Ning | Guo, Xu | Wang, HongJournal of Computational Physics, Vol. 405 (2020), Iss. P.109127
https://doi.org/10.1016/j.jcp.2019.109127 [Citations: 2] -
Numerical approximation and error analysis for Caputo–Hadamard fractional stochastic differential equations
Yang, Zhiwei
Zeitschrift für angewandte Mathematik und Physik, Vol. 73 (2022), Iss. 6
https://doi.org/10.1007/s00033-022-01890-x [Citations: 3] -
Fast spectral Petrov-Galerkin method for fractional elliptic equations
Hao, Zhaopeng | Zhang, ZhongqiangApplied Numerical Mathematics, Vol. 162 (2021), Iss. P.318
https://doi.org/10.1016/j.apnum.2020.12.026 [Citations: 7]