A Fast Finite Volume Method on Locally Refined Meshes for Fractional Diffusion Equations

A Fast Finite Volume Method on Locally Refined Meshes for Fractional Diffusion Equations

Year:    2019

Author:    Jinhong Jia, Hong Wang

East Asian Journal on Applied Mathematics, Vol. 9 (2019), Iss. 4 : pp. 755–779

Abstract

In this work, we consider a boundary value problem involving Caputo derivatives defined in the plane. We develop a fast locally refined finite volume method for variable-coefficient conservative space-fractional diffusion equations in the plane to resolve boundary layers of the solutions. Numerical results are presented to show the utility of the method.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/eajam.271118.280319

East Asian Journal on Applied Mathematics, Vol. 9 (2019), Iss. 4 : pp. 755–779

Published online:    2019-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    25

Keywords:    Space-fractional diffusion equation locally refined mesh Toeplitz matrix circulant matrix finite volume method.

Author Details

Jinhong Jia

Hong Wang

  1. Wellposedness and regularity of a variable-order space-time fractional diffusion equation

    Zheng, Xiangcheng | Wang, Hong

    Analysis and Applications, Vol. 18 (2020), Iss. 04 P.615

    https://doi.org/10.1142/S0219530520500013 [Citations: 15]
  2. Finite Element Approximations to Caputo–Hadamard Time-Fractional Diffusion Equation with Application in Parameter Identification

    Cheng, Shijing | Du, Ning | Wang, Hong | Yang, Zhiwei

    Fractal and Fractional, Vol. 6 (2022), Iss. 9 P.525

    https://doi.org/10.3390/fractalfract6090525 [Citations: 0]
  3. A Bound-Preserving Numerical Scheme for Space–Time Fractional Advection Equations

    Gao, Jing | Chen, Huaiguang

    Fractal and Fractional, Vol. 8 (2024), Iss. 2 P.89

    https://doi.org/10.3390/fractalfract8020089 [Citations: 0]
  4. A fast fractional block-centered finite difference method for two-sided space-fractional diffusion equations on general nonuniform grids

    Kong, Meijie | Fu, Hongfei

    Fractional Calculus and Applied Analysis, Vol. (2024), Iss.

    https://doi.org/10.1007/s13540-024-00346-5 [Citations: 0]
  5. A variably distributed-order time-fractional diffusion equation: Analysis and approximation

    Yang, Zhiwei | Zheng, Xiangcheng | Wang, Hong

    Computer Methods in Applied Mechanics and Engineering, Vol. 367 (2020), Iss. P.113118

    https://doi.org/10.1016/j.cma.2020.113118 [Citations: 27]
  6. A preconditioned fast finite element approximation to variable-order time-fractional diffusion equations in multiple space dimensions

    Jia, Jinhong | Wang, Hong | Zheng, Xiangcheng

    Applied Numerical Mathematics, Vol. 163 (2021), Iss. P.15

    https://doi.org/10.1016/j.apnum.2021.01.001 [Citations: 13]
  7. A fast H3N3‐2σ$_\sigma$‐based compact ADI difference method for time fractional wave equations

    Du, Ruilian

    ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Vol. (2024), Iss.

    https://doi.org/10.1002/zamm.202400431 [Citations: 0]
  8. Well-posedness and regularity of Caputo–Hadamard fractional stochastic differential equations

    Yang, Zhiwei | Zheng, Xiangcheng | Wang, Hong

    Zeitschrift für angewandte Mathematik und Physik, Vol. 72 (2021), Iss. 4

    https://doi.org/10.1007/s00033-021-01566-y [Citations: 15]
  9. An Efficient Explicit Decoupled Group Method for Solving Two–Dimensional Fractional Burgers’ Equation and Its Convergence Analysis

    Abdi, N. | Aminikhah, H. | Sheikhani, A. H. Refahi | Alavi, J. | Taghipour, M. | De León, Manuel

    Advances in Mathematical Physics, Vol. 2021 (2021), Iss. P.1

    https://doi.org/10.1155/2021/6669287 [Citations: 6]
  10. A fast collocation approximation to a two-sided variable-order space-fractional diffusion equation and its analysis

    Jia, Jinhong | Wang, Hong | Zheng, Xiangcheng

    Journal of Computational and Applied Mathematics, Vol. 388 (2021), Iss. P.113234

    https://doi.org/10.1016/j.cam.2020.113234 [Citations: 11]
  11. An efficient positive‐definite block‐preconditioned finite volume solver for two‐sided fractional diffusion equations on composite mesh

    Dai, Pingfei | Jia, Jinhong | Wang, Hong | Wu, Qingbiao | Zheng, Xiangcheng

    Numerical Linear Algebra with Applications, Vol. 28 (2021), Iss. 5

    https://doi.org/10.1002/nla.2372 [Citations: 1]
  12. Fast upwind and Eulerian-Lagrangian control volume schemes for time-dependent directional space-fractional advection-dispersion equations

    Du, Ning | Guo, Xu | Wang, Hong

    Journal of Computational Physics, Vol. 405 (2020), Iss. P.109127

    https://doi.org/10.1016/j.jcp.2019.109127 [Citations: 2]
  13. Numerical approximation and error analysis for Caputo–Hadamard fractional stochastic differential equations

    Yang, Zhiwei

    Zeitschrift für angewandte Mathematik und Physik, Vol. 73 (2022), Iss. 6

    https://doi.org/10.1007/s00033-022-01890-x [Citations: 3]
  14. Fast spectral Petrov-Galerkin method for fractional elliptic equations

    Hao, Zhaopeng | Zhang, Zhongqiang

    Applied Numerical Mathematics, Vol. 162 (2021), Iss. P.318

    https://doi.org/10.1016/j.apnum.2020.12.026 [Citations: 7]