Journals
Resources
About Us
Open Access

Negligible Obstructions and Turán Exponents

Negligible Obstructions and Turán Exponents

Year:    2022

Author:    Tao Jiang, Zilin Jiang, Jie Ma

Annals of Applied Mathematics, Vol. 38 (2022), Iss. 3 : pp. 356–384

Abstract

We show that for every rational number $r∈(1,2)$ of the form $2−a/b,$ where $a, b∈\mathbb{N}^+$ satisfy $$\lfloor b/a\rfloor ^3 ≤a≤b/(\lfloor b/a\rfloor +1)+1,$$ there exists a graph $F_r$ such that the Turán number ${\rm ex}(n,F_r)=Θ(n^r).$ Our result in particular generates infinitely many new Turán exponents. As a byproduct, we formulate a framework that is taking shape in recent work on the Bukh–Conlon conjecture.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/aam.OA-2022-0008

Annals of Applied Mathematics, Vol. 38 (2022), Iss. 3 : pp. 356–384

Published online:    2022-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    29

Keywords:    Extremal graph theory turán exponents bipartite graphs.

Author Details

Tao Jiang

Zilin Jiang

Jie Ma

  1. Rational Exponents for Cliques

    English, Sean | Halfpap, Anastasia | Krueger, Robert A.

    SIAM Journal on Discrete Mathematics, Vol. 39 (2025), Iss. 2 P.1246

    https://doi.org/10.1137/24M1695671 [Citations: 0]
  2. Turán Number of Nonbipartite Graphs and the Product Conjecture

    Peng, Xing | Song, Ge | Yuan, Long-Tu

    Communications in Mathematics and Statistics, Vol. (2023), Iss.

    https://doi.org/10.1007/s40304-023-00375-1 [Citations: 0]