Negligible Obstructions and Turán Exponents

Negligible Obstructions and Turán Exponents

Year:    2022

Author:    Tao Jiang, Zilin Jiang, Jie Ma

Annals of Applied Mathematics, Vol. 38 (2022), Iss. 3 : pp. 356–384

Abstract

We show that for every rational number $r∈(1,2)$ of the form $2−a/b,$ where $a, b∈\mathbb{N}^+$ satisfy $$\lfloor b/a\rfloor ^3 ≤a≤b/(\lfloor b/a\rfloor +1)+1,$$ there exists a graph $F_r$ such that the Turán number ${\rm ex}(n,F_r)=Θ(n^r).$ Our result in particular generates infinitely many new Turán exponents. As a byproduct, we formulate a framework that is taking shape in recent work on the Bukh–Conlon conjecture.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/aam.OA-2022-0008

Annals of Applied Mathematics, Vol. 38 (2022), Iss. 3 : pp. 356–384

Published online:    2022-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    29

Keywords:    Extremal graph theory turán exponents bipartite graphs.

Author Details

Tao Jiang

Zilin Jiang

Jie Ma

  1. Turán Number of Nonbipartite Graphs and the Product Conjecture

    Peng, Xing

    Song, Ge

    Yuan, Long-Tu

    (2023)

    https://doi.org/10.1007/s40304-023-00375-1 [Citations: 0]