Transverse Instability of the CH-KP-I Equation

Transverse Instability of the CH-KP-I Equation

Year:    2021

Author:    Robin Ming Chen, Jie Jin

Annals of Applied Mathematics, Vol. 37 (2021), Iss. 3 : pp. 337–362

Abstract

The Camassa-Holm-Kadomtsev-Petviashvili-I equation (CH-KP-I) is a two dimensional generalization of the Camassa-Holm equation (CH). In this paper, we prove transverse instability of the line solitary waves under periodic transverse perturbations. The proof is based on the framework of [18]. Due to the high nonlinearity, our proof requires necessary modification. Specifically, we first establish the linear instability of the line solitary waves. Then through an approximation procedure, we prove that the linear effect actually dominates the nonlinear behavior.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/aam.OA-2021-0004

Annals of Applied Mathematics, Vol. 37 (2021), Iss. 3 : pp. 337–362

Published online:    2021-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    26

Keywords:    Camassa-Holm-Kadomtsev-Ketviashvili-I equation line solitary waves transverse instability.

Author Details

Robin Ming Chen

Jie Jin

  1. Spectral analysis of the periodic b-KP equation under transverse perturbations

    Chen, Robin Ming | Fan, Lili | Wang, Xingchang | Xu, Runzhang

    Mathematische Annalen, Vol. 390 (2024), Iss. 4 P.6315

    https://doi.org/10.1007/s00208-024-02907-8 [Citations: 1]
  2. Periodically modulated solitary waves of the CH–KP-I equation

    Nilsson, Dag | Svensson Seth, Douglas | Wang, Yuexun

    Zeitschrift für angewandte Mathematik und Physik, Vol. 75 (2024), Iss. 6

    https://doi.org/10.1007/s00033-024-02338-0 [Citations: 0]