On Fractional Smoothness of Modulus of Functions

On Fractional Smoothness of Modulus of Functions

Year:    2021

Author:    Dong Li

Annals of Applied Mathematics, Vol. 37 (2021), Iss. 3 : pp. 394–404

Abstract

We consider the Nemytskii operators $u\to |u|$ and $u\to u^{\pm}$ in a bounded domain $\Omega$ with $C^2$ boundary. We give elementary proofs of the boundedness in $H^s(\Omega)$ with $0\le s<3/2$.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/aam.OA-2021-0006

Annals of Applied Mathematics, Vol. 37 (2021), Iss. 3 : pp. 394–404

Published online:    2021-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    11

Keywords:    Nemytskii nonlocal extension fractional Laplacian.

Author Details

Dong Li