Lipschitz Continuity of Minimizers for the Ginzburg-Landau Functional Between Alexandrov Spaces

Lipschitz Continuity of Minimizers for the Ginzburg-Landau Functional Between Alexandrov Spaces

Year:    2019

Author:    Jia-Cheng Huang, Hui-Chun Zhang

Annals of Applied Mathematics, Vol. 35 (2019), Iss. 3 : pp. 266–308

Abstract

In this paper, we shall prove that any minimizer of Ginzburg-Landau functional from an Alexandrov space with curvature bounded below into a nonpositively curved metric cone must be locally Lipschitz continuous.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/2019-AAM-18083

Annals of Applied Mathematics, Vol. 35 (2019), Iss. 3 : pp. 266–308

Published online:    2019-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    43

Keywords:    Ginzburg-Landau functional Alexandrov space NPC metric space.

Author Details

Jia-Cheng Huang

Hui-Chun Zhang