Asymptotic Eigenvalue Estimation for a Class of Structured Matrices

Asymptotic Eigenvalue Estimation for a Class of Structured Matrices

Year:    2019

Author:    Juan Liang, Jiangzhou Lai, Qiang Niu

Annals of Applied Mathematics, Vol. 35 (2019), Iss. 2 : pp. 152–158

Abstract

In this paper we consider eigenvalue asymptotic estimations for a class of structured matrices arising from statistical applications. The asymptotic upper bounds of the largest eigenvalue ($λ$max) and the sum of squares of eigenvalues $(\sum\limits_{i=1}^nλ_i^2)$ are derived. Both these bounds are useful in examining the stability of certain Markov process. Numerical examples are provided to illustrate tightness of the bounds.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/2019-AAM-18074

Annals of Applied Mathematics, Vol. 35 (2019), Iss. 2 : pp. 152–158

Published online:    2019-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    7

Keywords:    Toeplitz matrix eigenvalue rank-one modification trace.

Author Details

Juan Liang

Jiangzhou Lai

Qiang Niu