Loading [MathJax]/jax/output/HTML-CSS/config.js
Journals
Resources
About Us
Open Access

Some Limit Properties and the Generalized AEP Theorem for Nonhomogeneous Markov Chains

Some Limit Properties and the Generalized AEP Theorem for Nonhomogeneous Markov Chains

Year:    2018

Author:    Ping Hu, Zhongzhi Wang

Annals of Applied Mathematics, Vol. 34 (2018), Iss. 3 : pp. 269–284

Abstract

Let $(ξ_n)^∞_{n=0}$ be a Markov chain with the state space $\chi = \{1, 2, · · · , b\},$ $(g_n(x, y))^∞_{n=1}$ be functions defined on $\chi \times \chi,$ and $$F_{m_n,b_n} (\omega) =\frac{1}{b_n}\sum\limits_{k=m_n+1}^{m_n+b_n}g_k(ξ_{k−1}, ξ_k).$$ In this paper the limit properties of $F_{m_n,b_n}(\omega)$ and the generalized relative entropy density $f_{m_n,b_n}(ω)=−(1/b_n){\rm log}p(ξ_{m_n,m_n+b_n})$ are discussed, and some theorems on a.s. convergence for $(ξ_n)^∞_{n=0}$ and the generalized Shannon-McMillan (AEP) theorem on finite nonhomogeneous Markov chains are obtained.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/2018-AAM-20577

Annals of Applied Mathematics, Vol. 34 (2018), Iss. 3 : pp. 269–284

Published online:    2018-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    16

Keywords:    AEP nonhomogeneous Markov chains limit theorem generalized relative entropy density.

Author Details

Ping Hu

Zhongzhi Wang