Year: 2016
Author: Amel Boulfoul, Amar Makhlouf
Annals of Applied Mathematics, Vol. 32 (2016), Iss. 3 : pp. 221–233
Abstract
Using the averaging theory of first and second order we study the maximum number of limit cycles of generalized Liénard differential systems $$\begin{cases} \dot{x}= y + ϵh^1_l (x) + ϵ^2h^2_l (x), \\ \dot{y}= −x − ϵ(f^1_n (x)y^{2p+1}+ g^1_m(x)) + ϵ^2 (f^2_n(x)y^{2p+1}+ g^2_m(x)), \end{cases}$$ which bifurcate from the periodic orbits of the linear center $\dot{x} = y,$ $\dot{y}= −x,$ where $ϵ$ is a small parameter. The polynomials $h^1_l$ and $h^2_l$ have degree $l;$ $f^1_n$ and $f^2_n$ have degree $n;$ and $g^1_m,$ $g^2_m$ have degree $m.$ $p ∈ \mathbb{N}$ and [·] denotes the integer part function.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/2016-AAM-20639
Annals of Applied Mathematics, Vol. 32 (2016), Iss. 3 : pp. 221–233
Published online: 2016-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 13
Keywords: limit cycle periodic orbit Liénard differential system averaging theory.