Stochastic Runge-Kutta–Munthe-Kaas Methods in the Modelling of Perturbed Rigid Bodies

Stochastic Runge-Kutta–Munthe-Kaas Methods in the Modelling of Perturbed Rigid Bodies

Year:    2022

Author:    Michelle Muniz, Matthias Ehrhardt, Michael Günther, Renate Winkler

Advances in Applied Mathematics and Mechanics, Vol. 14 (2022), Iss. 2 : pp. 528–538

Abstract

In this paper we present how nonlinear stochastic Itô differential equations arising in the modelling of perturbed rigid bodies can be solved numerically in such a way that the solution evolves on the correct manifold. To this end, we formulate an approach based on Runge-Kutta–Munthe-Kaas (RKMK) schemes for ordinary differential equations on manifolds. 

Moreover, we provide a proof of the mean-square convergence of this stochastic version of the RKMK schemes applied to the rigid body problem and illustrate the effectiveness of our proposed schemes by demonstrating the structure preservation of the stochastic RKMK schemes in contrast to the stochastic Runge-Kutta methods.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/aamm.OA-2021-0176

Advances in Applied Mathematics and Mechanics, Vol. 14 (2022), Iss. 2 : pp. 528–538

Published online:    2022-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    11

Keywords:    Stochastic Runge-Kutta method Runge-Kutta–Munthe-Kaas scheme nonlinear Itô SDEs rigid body problem.

Author Details

Michelle Muniz

Matthias Ehrhardt

Michael Günther

Renate Winkler

  1. Strong stochastic Runge-Kutta–Munthe-Kaas methods for nonlinear Itô SDEs on manifolds

    Muniz, Michelle

    Ehrhardt, Matthias

    Günther, Michael

    Winkler, Renate

    Applied Numerical Mathematics, Vol. 193 (2023), Iss. P.196

    https://doi.org/10.1016/j.apnum.2023.07.024 [Citations: 1]