A Robust Riemann Solver for Multiple Hydro-Elastoplastic Solid Mediums

A Robust Riemann Solver for Multiple Hydro-Elastoplastic Solid   Mediums

Year:    2020

Author:    Ruo Li, Yanli Wang, Chengbao Yao

Advances in Applied Mathematics and Mechanics, Vol. 12 (2020), Iss. 1 : pp. 212–250

Abstract

We propose a robust approximate solver for the hydro-elastoplastic solid material, a general constitutive law extensively applied in explosion and high speed impact dynamics, and provide a natural transformation between the fluid and solid in the case of phase transitions. The hydrostatic components of the solid is described by a family of general Mie-Grüneisen equation of state (EOS), while the deviatoric component includes the elastic phase, linearly hardened plastic phase and fluid phase. The approximate solver provides the interface stress and normal velocity by an iterative method. The well-posedness and convergence of our solver are proved with mild assumptions on the equations of state. The proposed solver is applied in computing the numerical flux at the phase interface for our compressible multi-medium flow simulation on Eulerian girds. Several numerical examples, including Riemann problems, shock-bubble interactions, implosions and high speed impact applications, are presented to validate the approximate solver.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/aamm.OA-2019-0039

Advances in Applied Mathematics and Mechanics, Vol. 12 (2020), Iss. 1 : pp. 212–250

Published online:    2020-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    39

Keywords:    Riemann solver Mie-Grüneisen hydro-elastoplastic solid multi-medium flow.

Author Details

Ruo Li

Yanli Wang

Chengbao Yao

  1. Elastic Hugoniot curve of one-dimensional Wilkins model with general Grüneisen-type equation of state

    Li, Xiao | Zhai, Jiayin | Shen, Zhijun

    Journal of Computational Physics, Vol. 464 (2022), Iss. P.111337

    https://doi.org/10.1016/j.jcp.2022.111337 [Citations: 0]
  2. The complete exact Riemann solution for one-dimensional elastic–perfectly plastic Riemann problem

    Li, Xiao | Zhai, Jiayin | Shen, Zhijun

    Computer Methods in Applied Mechanics and Engineering, Vol. 390 (2022), Iss. P.114346

    https://doi.org/10.1016/j.cma.2021.114346 [Citations: 2]
  3. An HLLC-type approximate Riemann solver for two-dimensional elastic-perfectly plastic model

    Li, Xiao | Zhai, Jiayin | Shen, Zhijun

    Journal of Computational Physics, Vol. 448 (2022), Iss. P.110675

    https://doi.org/10.1016/j.jcp.2021.110675 [Citations: 3]
  4. Harten-Lax-van Leer-discontinuities with elastic waves (HLLD-e) approximate Riemann solver for two-dimensional elastic-plastic flows with slip/no-slip interface boundary conditions

    Zhao, Fuyu | Wang, Cheng | Jia, Xiyu | Wang, Wanli

    Computers & Fluids, Vol. 265 (2023), Iss. P.106015

    https://doi.org/10.1016/j.compfluid.2023.106015 [Citations: 2]